Skip to main content

Impact of maternal and paternal preconception health on birth outcomes using prospective couples’ data in Add Health

Abstract

Purpose

Retrospective studies of preconception health have demonstrated that parents’ health conditions and behaviors can impact a newborn’s birth outcomes and, subsequently, future health status. This study sought to examine the impact of preconception health, measured prospectively, among both mothers and fathers, on two important birth outcomes: birthweight and gestational age.

Methods

Data came from Add Health (the National Longitudinal Study of Adolescent Health), which included interviews with original participants and a subsample of their partners in 2001–02. In 2008, the original respondents again completed an interview for Add Health. For 372 eligible infants born to these couples, birth outcomes (measured in 2008) were regressed on preconception health conditions and behaviors among non-pregnant heterosexual partners (measured in 2001–02).

Results

Mean birthweight was 3,399 g, and mean gestational age was 39 weeks. Birthweight was higher for infants born to mothers with diabetes or high blood pressure, and for mothers who drank alcohol at least once per month, and lower for infants born to fathers with diabetes (p < 0.05). Infant gestational age was marginally lower for infants born to mothers with higher levels of depression (p < 0.10), and lower for infants born to fathers with diabetes and with higher levels of fast food consumption (p < 0.05).

Conclusions

Both maternal and paternal preconception health conditions and behaviors influenced infant birth outcomes. Interventions to promote preconception health should focus on prevention of diabetes and high blood pressure, as well as minimizing consumption of alcohol and fast food.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Centers for Disease Control and Prevention (CDC) (2012) Preconception care and health care. In: http://www.cdc.gov/preconception/overview.html. Accessed April 20 2013

  2. 2.

    Misra DP, Guyer B, Allston A (2003) Integrated perinatal health framework. A multiple determinants model with a life span approach. Am J Prev Med 25(1):65–75 (S0749379703000904)

    PubMed  Article  Google Scholar 

  3. 3.

    Ashton DM, Lawrence HC, Adams NL, Fleischman AR (2009) Surgeon general’s conference on the prevention of preterm birth. Obstet Gynecol. doi:10.1097/AOG.0b013e31819bdba3

    PubMed  Google Scholar 

  4. 4.

    Seshadri S, Oakeshott P, Nelson-Piercy C, Chappell LC (2012) Prepregnancy care. BMJ. doi:10.1136/bmj.e3467

    PubMed Central  Google Scholar 

  5. 5.

    Barker DJ, Osmond C, Simmonds SJ, Wield GA (1993) The relation of small head circumference and thinness at birth to death from cardiovascular disease in adult life. BMJ 306(6875):422–426

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  6. 6.

    Dahly DL, Adair LS, Bollen KA (2009) A structural equation model of the developmental origins of blood pressure. Int J Epidemiol. doi:10.1093/ije/dyn242

    PubMed Central  PubMed  Google Scholar 

  7. 7.

    Wilson J (1999) The Barker hypothesis. An analysis. Aust N Z J Obstet Gynaecol 39(1):1–7

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    de Boo HA, Harding JE (2006) The developmental origins of adult disease (Barker) hypothesis. Aust NZ J Obstet Gynaecol. doi:10.1111/j.1479-828X.2006.00506.x

    Google Scholar 

  9. 9.

    Morley R (2006) Fetal origins of adult disease. Semin Fetal Neonatal Med. doi:10.1016/j.siny.2005.11.001

    PubMed  Google Scholar 

  10. 10.

    Agius R, Savona-Ventura C, Vassallo J (2013) Transgenerational metabolic determinants of fetal birth weight. Exp Clin Endocrinol Diabetes. doi:10.1055/s-0033-1345121

    PubMed  Google Scholar 

  11. 11.

    Oken E (2009) Maternal and child obesity: the causal link. Obstet Gynecol Clin North Am. doi:10.1016/j.ogc.2009.03.007

    PubMed  Google Scholar 

  12. 12.

    Strutz KL, Richardson LJ, Hussey JM (2012) Preconception health trajectories and birth weight in a national prospective cohort. J Adolesc Health. doi:10.1016/j.jadohealth.2012.03.013

    PubMed Central  PubMed  Google Scholar 

  13. 13.

    Yu Z, Han S, Zhu J, Sun X, Ji C, Guo X (2013) Pre-pregnancy body mass index in relation to infant birth weight and offspring overweight/obesity: a systematic review and meta-analysis. PLoS One. doi:10.1371/journal.pone.0061627

    Google Scholar 

  14. 14.

    Kiely M, El-Mohandes AA, Gantz MG, Chowdhury D, Thornberry JS, El-Khorazaty MN (2011) Understanding the association of biomedical, psychosocial and behavioral risks with adverse pregnancy outcomes among African-Americans in Washington. Matern Child Health J, DC. doi:10.1007/s10995-011-0856-z

    Google Scholar 

  15. 15.

    Tang L, Zhu P, Hao JH, Huang K, Xu SJ, Wang H, Wang L, Tao FB (2013) Pre-pregnancy body mass index moderates the effect of maternal depressive symptoms on small-for-gestational-age infants. Arch Gynecol Obstet. doi:10.1007/s00404-013-2720-4

    Google Scholar 

  16. 16.

    Goetzinger KR, Cahill AG, Macones GA, Odibo AO (2012) The relationship between maternal body mass index and tobacco use on small-for-gestational-age infants. Am J Perinatol. doi:10.1055/s-0031-1284224

    PubMed Central  PubMed  Google Scholar 

  17. 17.

    Glinianaia SV, Tennant PW, Bilous RW, Rankin J, Bell R (2012) HbA(1c) and birthweight in women with pre-conception type 1 and type 2 diabetes: a population-based cohort study. Diabetologia. doi:10.1007/s00125-012-2721-z

    Google Scholar 

  18. 18.

    Bonzini M, Coggon D, Palmer KT (2007) Risk of prematurity, low birthweight and pre-eclampsia in relation to working hours and physical activities: a systematic review. Occup Environ Med 64(4):228–243. doi:10.1136/oem.2006.026872

    PubMed Central  PubMed  Article  Google Scholar 

  19. 19.

    de Jongh BE, Paul DA, Hoffman M, Locke R (2013) Effects of pre-pregnancy obesity, race/ethnicity and prematurity. Matern Child Health J. doi:10.1007/s10995-013-1296-8

    Google Scholar 

  20. 20.

    Dekker GA, Lee SY, North RA, McCowan LM, Simpson NA, Roberts CT (2012) Risk factors for preterm birth in an international prospective cohort of nulliparous women. PLoS One. doi:10.1371/journal.pone.0039154

    Google Scholar 

  21. 21.

    Ogunyemi D, Hullett S, Leeper J, Risk A (1998) Prepregnancy body mass index, weight gain during pregnancy, and perinatal outcome in a rural black population. J Matern Fetal Med 7(4):190–193 (2-D)

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Orr ST, Reiter JP, James SA, Orr CA (2012) Maternal health prior to pregnancy and preterm birth among urban, low income black women in Baltimore: the Baltimore Preterm Birth Study. Ethn Dis 22(1):85–89

    PubMed  Google Scholar 

  23. 23.

    Mullally A, Cleary BJ, Barry J, Fahey TP, Murphy DJ (2011) Prevalence, predictors and perinatal outcomes of peri-conceptional alcohol exposure–retrospective cohort study in an urban obstetric population in Ireland. BMC Pregnancy Childbirth. doi:10.1186/1471-2393-11-27

    PubMed Central  PubMed  Google Scholar 

  24. 24.

    Barker DJ, Bull AR, Osmond C, Simmonds SJ (1990) Fetal and placental size and risk of hypertension in adult life. BMJ 301(6746):259–262

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  25. 25.

    Byrne CD, Phillips DI (2000) Fetal origins of adult disease: epidemiology and mechanisms. J Clin Pathol 53(11):822–828

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. 26.

    Calkins K, Devaskar SU (2011) Fetal origins of adult disease. Curr Probl Pediatr Adolesc Health Care. doi:10.1016/j.cppeds.2011.01.001

    PubMed  Google Scholar 

  27. 27.

    Davey Smith G, Hypponen E, Power C, Lawlor DA (2007) Offspring birth weight and parental mortality: prospective observational study and meta-analysis. Am J Epidemiol. doi:10.1093/aje/kwm054

    Google Scholar 

  28. 28.

    McCowan LM, North RA, Kho EM, Black MA, Chan EH, Dekker GA, Poston L, Taylor RS, Roberts CT (2011) Paternal contribution to small for gestational age babies: a multicenter prospective study. Obesity (Silver Spring). doi:10.1038/oby.2010.279

    Google Scholar 

  29. 29.

    Zaina S, Lund G (2012) Paternal transmission, cardiovascular risk factors and epigenetics. Curr Opin Lipidol. doi:10.1097/MOL.0b013e32835918cd

    Google Scholar 

  30. 30.

    Hillman S, Peebles DM, Williams DJ (2013) Paternal metabolic and cardiovascular risk factors for fetal growth restriction: a case-control study. Diabetes Care. doi:10.2337/dc12-1280

    PubMed Central  PubMed  Google Scholar 

  31. 31.

    Drake AJ, Liu L, Kerrigan D, Meehan RR, Seckl JR (2011) Multigenerational programming in the glucocorticoid programmed rat is associated with generation-specific and parent of origin effects. Epigenetics. doi:10.4161/epi.6.11.17942

    PubMed  Google Scholar 

  32. 32.

    Filiberto AC, Maccani MA, Koestler D, Wilhelm-Benartzi C, Avissar-Whiting M, Banister CE, Gagne LA, Marsit CJ (2011) Birthweight is associated with DNA promoter methylation of the glucocorticoid receptor in human placenta. Epigenetics 6(5):566–572

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  33. 33.

    Lee H, Jaffe AE, Feinberg JI, Tryggvadottir R, Brown S, Montano C, Aryee MJ, Irizarry RA, Herbstman J, Witter FR, Goldman LR, Feinberg AP, Fallin MD (2012) DNA methylation shows genome-wide association of NFIX, RAPGEF2 and MSRB3 with gestational age at birth. Int J Epidemiol. doi:10.1093/ije/dyr237

    Google Scholar 

  34. 34.

    Soubry A, Schildkraut JM, Murtha A, Wang F, Huang Z, Bernal A, Kurtzberg J, Jirtle RL, Murphy SK, Hoyo C (2013) Paternal obesity is associated with IGF2 hypomethylation in newborns: results from a Newborn Epigenetics Study (NEST) cohort. BMC Med. doi:10.1186/1741-7015-11-29

    PubMed Central  PubMed  Google Scholar 

  35. 35.

    Steegers-Theunissen RP, Twigt J, Pestinger V, Sinclair KD (2013) The periconceptional period, reproduction and long-term health of offspring: the importance of one-carbon metabolism. Hum Reprod Update. doi:10.1093/humupd/dmt041

    PubMed Central  Google Scholar 

  36. 36.

    Lecomte V, Youngson NA, Maloney CA, Morris MJ (2013) Parental programming: how can we improve study design to discern the molecular mechanisms? BioEssays. doi:10.1002/bies.201300051

    PubMed  Google Scholar 

  37. 37.

    Wilcox AJ (2010) Fertility and pregnancy: an epidemiologic perspective. Oxford University Press, USA

    Google Scholar 

  38. 38.

    Harris KM (2011) Design features of Add Health. In: http://www.cpc.unc.edu/projects/addhealth/data/guides/DesignPaperWIIV.pdf. Accessed December 12 2013

  39. 39.

    Harris KM (2010) An integrative approach to health. Demography 47(1):1–22

    PubMed Central  PubMed  Article  Google Scholar 

  40. 40.

    Radloff LS (1977) The CES-D scale: a self-report depression scale for research in the general population. Appl Psychol Meas 1:385–401

    Article  Google Scholar 

  41. 41.

    Nguyen HT, Kitner-Triolo M, Evans MK, Zonderman AB (2004) Factorial invariance of the CES-D in low socioeconomic status African Americans compared with a nationally representative sample. Psychiatry Res. doi:10.1016/j.psychres.2004.02.004

    PubMed  Google Scholar 

  42. 42.

    Orme JG, Reis J, Herz EJ (1986) Factorial and discriminant validity of the Center for Epidemiological Studies Depression (CES-D) scale. J Clin Psychol 42(1):28–33

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Weissman MM, Sholomskas D, Pottenger M, Prusoff BA, Locke BZ (1977) Assessing depressive symptoms in five psychiatric populations: a validation study. Am J Epidemiol 106(3):203–214

    CAS  PubMed  Google Scholar 

  44. 44.

    Perreira KM, Deeb-Sossa N, Harris KM, Bollen KA (2005) What are we measuring? An evaluation of the CES-D across race/ethnicity and immigrant generation. Soc Forces 83:1567–1601

    Article  Google Scholar 

  45. 45.

    Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults–The Evidence Report. National Institutes of Health(1998). Obes Res

  46. 46.

    Chen P, Tabor J, Chantala K (2012) Guidelines for analyzing Add Health data. In: http://www.cpc.unc.edu/projects/addhealth/data/guides/wt-guidelines.pdf. Accessed December 12 2013

  47. 47.

    Song SH (2012) Emerging type 2 diabetes in young adults. Adv Exp Med Biol 71:51–61

    Google Scholar 

  48. 48.

    Harville EW, Viikari JS, Raitakari OT (2011) Preconception cardiovascular risk factors and pregnancy outcome. Epidemiology. doi:10.1097/EDE.0b013e318225c960

    PubMed Central  PubMed  Google Scholar 

  49. 49.

    Steer PJ, Little MP, Kold-Jensen T, Chapple J, Elliott P (2004) Maternal blood pressure in pregnancy, birth weight, and perinatal mortality in first births: prospective study. BMJ. doi:10.1136/bmj.38258.566262.7C

    Google Scholar 

  50. 50.

    Waugh J, Perry IJ, Halligan AW, De Swiet M, Lambert PC, Penny JA, Taylor DJ, Jones DR, Shennan A (2000) Birth weight and 24-hour ambulatory blood pressure in nonproteinuric hypertensive pregnancy. Am J Obstet Gynecol. doi:10.1067/mob.2000.106448

    PubMed  Google Scholar 

Download references

Acknowledgments

This research uses data from Add Health, a program project directed by Kathleen Mullan Harris and designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University of North Carolina at Chapel Hill, and funded by grant P01-HD31921 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, with cooperative funding from 23 other federal agencies and foundations. Special acknowledgment is due Ronald R. Rindfuss and Barbara Entwisle for assistance in the original design. Information on how to obtain the Add Health data files is available on the Add Health website (http://www.cpc.unc.edu/addhealth). No direct support was received from grant P01-HD31921 for this analysis.

Conflict of interest

The authors declare that they have no conflict of interest. Access to the data used in the present analysis is restricted to protect against deductive disclosure.

Ethical standard

All participants provided informed consent before completing questionnaires at each wave of study collection. The University of North Carolina Non-Biomedical Institutional Review Board approved the study procedures and analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Moss.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moss, J.L., Harris, K.M. Impact of maternal and paternal preconception health on birth outcomes using prospective couples’ data in Add Health. Arch Gynecol Obstet 291, 287–298 (2015). https://doi.org/10.1007/s00404-014-3521-0

Download citation

Keywords

  • Preconception health
  • Maternal health
  • Birth outcomes
  • Gestational age
  • Birthweight