Skip to main content

Advertisement

Log in

Focus on metabolic and nutritional correlates of polycystic ovary syndrome and update on nutritional management of these critical phenomena

  • Review
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Introduction

Polycystic ovary syndrome (PCOS) is associated with numerous metabolic morbidities (insulin resistance (IR), central obesity) and various nutritional abnormalities (vitamin D deficit, mineral milieu alterations, omega6/omega3 PUFA ratio unbalance).

Methods

We performed a systematic literature review to evaluate the till-now evidence regarding: (1) the metabolic and nutritional correlates of PCOS; (2) the optimum diet therapy for the treatment of these abnormalities. This review included 127 eligible studies.

Results

In addition to the well-recognized link between PCOS and IR, the recent literature underlines that in PCOS there is an unbalance in adipokines (adiponectin, leptin, visfatin) production and in omega6/omega3 PUFA ratio. Given the detrimental effect of overweight on these metabolic abnormalities, a change in the lifestyle must be the cornerstone in the treatment of PCOS patients. The optimum diet therapy for the PCOS treatment must aim at achieving specific metabolic goals, such as IR improvement, adipokines secretion and reproductive function. These goals must be reached through: accession of the patient to hypocaloric dietary program aimed at achieving and/or maintaining body weight; limiting the consumption of sugar and refined carbohydrates, preferring those with lower glycemic index; dividing the food intake in small and frequent meals, with high caloric intake at breakfast; increasing their intake of fish (4 times/week) or taking omega3 PUFA supplements; taking Vitamin D and chromium supplementation, if there are low serum levels.

Conclusion

Lifestyle intervention remains the optimal treatment strategy for PCOS women. A relatively small weight loss (5 %) can improve IR, hyperandrogenism, menstrual function, fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calvo AM, San Millan RM, Sancho JL, Avila SJ, Escobar-Morreale HF (2000) A prospective study of the prevalence of the polycystic ovary syndrome in unselected Caucasian women from Spain. J Clin Endocrinol Metab 85:2434–2438

    PubMed  Google Scholar 

  2. Dunaif A (1997) Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev 18:774–800

    CAS  PubMed  Google Scholar 

  3. Goodarzi MO, Dumesic DA, Chazenbalk G, Azziz R (2011) Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol 7:219–231

    CAS  PubMed  Google Scholar 

  4. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group (2003) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 19:41–47

    Google Scholar 

  5. Ehrmann DA (2005) Polycystic ovary syndrome. N Engl J Med 352:1223–1236

    CAS  PubMed  Google Scholar 

  6. Solomon CG (1999) The epidemiology of polycystic ovary syndrome. Prevalence and associated disease risks. Endocrinol Metab Clin North Am 28:247–263

    CAS  PubMed  Google Scholar 

  7. Dunaif A, Graf M, Mandeli J, Laumas V, Dobrjansky A (1987) Characterization of groups of hyperandrogenic women with acanthosis nigricans, impaired glucose tolerance, and/or hyperinsulinemia. J Clin Endocrinol Metab 65:499–507

    CAS  PubMed  Google Scholar 

  8. Jakubowicz DJ, Nestler JE (1997) 17 alpha-hydroxyprogesterone responses to leuprolide and serum androgens in obese women with and without polycystic ovary syndrome offer dietary weight loss. J Clin Endocrinol Metab 82:556–560

    CAS  PubMed  Google Scholar 

  9. Plymate SR, Matej LA, Jones RE, Friedl KE (1998) Inhibition of sex hormone-binding globulin production in the human hepatoma (Hep G2) cell line by insulin and prolactin. J Clin Endocrinol Metab 67:460–464

    Google Scholar 

  10. Nestler JE, Powers LP, Matt DW et al (1991) A direct effect of hyperinsulinemia on serum sex hormone-binding globulin levels in obese women with the polycystic ovary syndrome. J Clin Endocrinol Metab 72:83–89

    CAS  PubMed  Google Scholar 

  11. Utsunomiya T, Taniguchi I, Sadanaga A, Iwasato K, Mizoguchi Y, Terawaki S (1993) Insulin resistance in non-obese patients with polycystic ovary syndrome. Jpn J Fertil Steril 38:77–81

    Google Scholar 

  12. Rosenfield RL, Barnes RB, Ehrmann DA (1994) Studies of the nature of 17-hydroxyprogesterone hyperresponsiveness to gonadotropin-releasing hormone agonist challenge in functional ovarian hyperandrogenism. J Clin Endocrinol Metab 79:1686–1692

    CAS  PubMed  Google Scholar 

  13. Egger M, Smith GD, Altman DG (2001) Systematic reviews in health care: meta-analysis in context. BMJ 2001:3–68

    Google Scholar 

  14. Yildiz BO, Knochenhauer ES, Azziz R (2008) Impact of obesity on the risk for polycystic ovary syndrome. J Clin Endocrinol Metab 93:162–168

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Apridonidze T, Essah PA, Iuorno MJ, Nestler JE (2005) Prevalence and characteristics of the metabolic syndrome in women with polycystic ovary syndrome. J Clin Endocrinol Metab 90:1929–1935

    CAS  PubMed  Google Scholar 

  16. Peppard HR, Marfori J, Iuorno MJ, Nestler JE (2001) Prevalence of polycystic ovary syndrome among premenopausal women with type 2 diabetes. Diabetes Care 24:1050–1052

    CAS  PubMed  Google Scholar 

  17. Lim SS, Norman RJ, Davies MJ, Moran LJ (2013) The effect of obesity on polycystic ovary syndrome: a systematic review and meta-analysis. Obes Rev 14:25–109

    Google Scholar 

  18. Gambineri A, Pelusi C, Vicennati V, Pagotto U, Pasquali R (2002) Obesity and the polycystic ovary syndrome. Int J Obes Metab Disord 26:883–896

    CAS  Google Scholar 

  19. DeUgarte CM, Bartolucci AA, Azziz R (2005) Prevalence of insulin resistance in the polycystic ovary syndrome using the homeostasis model assessment. Fertil Steril 83:1454–1460

    CAS  PubMed  Google Scholar 

  20. Carmina E, Lobo RA (2004) Use of fasting blood to assess the prevalence of insulin resistance in women with polycystic ovary syndrome. Fertil Steril 82:661–665

    PubMed  Google Scholar 

  21. Azziz R, Carmina E, Dewailly D et al (2009) The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril 91:456–488

    PubMed  Google Scholar 

  22. Carmina E, Bucchieri S, Esposito A (2007) Abdominal fat quantity and distribution in women with polycystic ovary syndrome and extent of its relation to insulin resistance. J Clin Endocrinol Metab 92:2500–2505

    CAS  PubMed  Google Scholar 

  23. Diamanti-Kandarakis E (2006) Insulin resistance in PCOS. Endocrine 30:13–17

    CAS  PubMed  Google Scholar 

  24. Geisthövel F (2010) Novel systematics of nomenclature and classification of female functional androgenization (including polycystic ovary syndrome and non-classic congenital adrenal hyperplasia). J Reprod Med Endokrinol 7:6–26

    Google Scholar 

  25. Goverde AJ, van Koert AJ, Eijkemans MJ, Knauff EA, Westerveld HE, Fauser BC, Broekmans FJ (2009) Indicators for metabolic disturbances in anovulatory women with polycystic ovary syndrome diagnosed according to the Rotterdam consensus criteria. Hum Reprod 24:710

    CAS  PubMed  Google Scholar 

  26. Lord JM, Flight IH, Norman RJ (2003) Insulin sensitising drugs (metformin, troglitazone, rosiglitazone, pioglitazone, D-chiro-inositol) for polycystic ovary syndrome. Cochrane Database Syst Rev 3:CD003053

    PubMed  Google Scholar 

  27. Palomba S, Orio F Jr, Falbo A, Manguso F, Russo T, Cascella T, Tolino A, Carmina E, Colao A, Zullo F (2005) Prospective parallel randomized, double-blind, double-dummy controlled clinical trial comparing clomiphene citrate and metformin as the first-line treatment for ovulation induction in nonobese anovulatory women with polycystic ovary syndrome. J Clin Endocrinol Metab 90(7):4068–4074

    CAS  PubMed  Google Scholar 

  28. Palomba S, Orio F Jr, Nardo LG, Falbo A, Russo T, Corea D, Doldo P, Lombardi G, Tolino A, Colao A, Zullo F (2004) Metformin administration versus laparoscopic ovarian diathermy in clomiphene citrate-resistant women with polycystic ovary syndrome: a prospective parallel randomized double-blind placebo-controlled trial. J Clin Endocrinol Metab 89(10):4801–4809

    CAS  PubMed  Google Scholar 

  29. Maciel GA, Soares Júnior JM, Alves da Motta EL, Abi Haidar M, de Lima GR, Baracat EC (2004) Nonobese women with polycystic ovary syndrome respond better than obese women to treatment with metformin. Fertil Steril 81(2):355–360

    CAS  PubMed  Google Scholar 

  30. Kumari AS, Haq A, Jayasundaram R, Abdel-Wareth LO, Al Haija SA, Alvares M (2005) Metformin monotherapy in lean women with polycystic ovary syndrome. Reprod Biomed Online 10(1):100–104

    CAS  PubMed  Google Scholar 

  31. Tan S, Hahn S, Benson S, Dietz T, Lahner H, Moeller LC, Schmidt M, Elsenbruch S, Kimmig R, Mann K, Janssen OE (2007) Metformin improves polycystic ovary syndrome symptoms irrespective of pre-treatment insulin resistance. Eur J Endocrinol 157(5):669–676

    CAS  PubMed  Google Scholar 

  32. Fauser BC, Tarlatzis BC, Rebar RW, Legro RS, Balen AH, Lobo R, Carmina E, Chang J, Yildiz BO, Laven JS, Boivin J, Petraglia F, Wijeyeratne CN, Norman RJ, Dunaif A, Franks S, Wild RA, Dumesic D, Barnhart K (2012) Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil Steril 97:28–38

    PubMed  Google Scholar 

  33. Panidis D, Tziomalos K, Chatzis P, Papadakis E, Delkos D, Tsourdi EA, Kandaraki EA, Katsikis I (2013) Association between menstrual cycle irregularities and endocrine and metabolic characteristics of the polycystic ovary syndrome. Eur J Endocrinol 168(2):145–152

    CAS  PubMed  Google Scholar 

  34. Robinson S, Kiddy D, Gelding SV, Willis D, Niththyananthan R, Bush A, Johnston DG, Franks S (1993) The relationship of insulin insensitivity to menstrual pattern in women with hyperandrogenism and polycystic ovaries. Clin Endocrinol (Oxf) 39(3):351–355

    CAS  Google Scholar 

  35. Gill S, Taylor AE, Martin KA, Welt CK, Adams JM, Hall JE (2001) Specific factors predict the response to pulsatile gonadotropin-releasing hormone therapy in polycystic ovarian syndrome. J Clin Endocrinol Metab 86(6):2428–2436

    CAS  PubMed  Google Scholar 

  36. Cupisti S, Kajaia N, Dittrich R, Duezenli H, Beckmann M W, Mueller A (2008) Body mass index and ovarian function are associated with endocrine and metabolic abnormalities in women with hyperandrogenic syndrome. Eur J Endocrinol 158(5):711–719. doi:10.1530/EJE-07-0515

    CAS  PubMed  Google Scholar 

  37. Strowitzki T, Capp E, von Eye Corleta H (2010) The degree of cycle irregularity correlates with the grade of endocrine and metabolic disorders in PCOS patients. Eur J Obstet Gynecol Reprod Biol 149(2):178–181. doi:10.1016/j.ejogrb.2009.12.024

    CAS  PubMed  Google Scholar 

  38. Wang JX, Davies MJ, Norman RJ (2001) Polycystic ovarian syndrome and the risk of spontaneous abortion following assisted reproductive technology treatment. Hum Reprod 16(12):2606–2609

    CAS  PubMed  Google Scholar 

  39. Boomsma CM, Fauser BC, Macklon NS (2008) Pregnancy complications in women with polycystic ovary syndrome. Semin Reprod Med 26(1):72–84. doi:10.1055/s-2007-992927

    PubMed  Google Scholar 

  40. Eppig JJ, O’Brien MJ, Pendola FL, Watanabe S (1998) Factors affecting the developmental competence of mouse oocytes grown in vitro: follicle-stimulating hormone and insulin. Biol Reprod 59(6):1445–1453

    CAS  PubMed  Google Scholar 

  41. Galal A, Mitwally MF (2009) Insulin sensitizers for women with polycystic ovarian syndrome. Expert Rev Endocrinol Metab 4:183–192

    CAS  Google Scholar 

  42. Dumesic DA, Schramm RD, Peterson E, Paprocki AM, Zhou R, Abbott DH (2002) Impaired developmental competence of oocytes in adult prenatally androgenized female rhesus monkeys undergoing gonadotropin stimulation for in vitro fertilization. J Clin Endocrinol Metab 87(3):1111–1119

    CAS  PubMed  Google Scholar 

  43. Tao Z, Yan L (2005) Luteinizing hormone and insulin inducing earlier and excess expression of luteinizing hormone receptor messenger ribonucleic acids in granulosa cells of polycystic ovary syndrome. Fertil Steril 84(Suppl):S426–S427

  44. Diamanti-Kandarakis E (2008) Polycystic ovarian syndrome: pathophysiology, molecular aspects and clinical implications. Expert Rev Mol Med 10:e3

    PubMed  Google Scholar 

  45. Jabara S, Coutifaris C (2003) In vitro fertilization in the PCOS patient: clinical considerations. Semin Reprod Med 21(3):317–324

    PubMed  Google Scholar 

  46. Cano F, García-Velasco JA, Millet A, Remohí J, Simón C, Pellicer A (1997) Oocyte quality in polycystic ovaries revisited: identification of a particular subgroup of women. J Assist Reprod Genet 14(5):254–261

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Kezele PR, Nilsson EE, Skinner MK (2002) Insulin but not insulin-like growth factor-1 promotes the primordial to primary follicle transition. Mol Cell Endocrinol 192(1–2):37–43

    CAS  PubMed  Google Scholar 

  48. Wood JR, Dumesic DA, Abbott DH, Strauss JF (2007) Molecular abnormalities in oocytes from women with polycystic ovary syndrome revealed by microarray analysis. J Clin Endocrinol Metab 92:705–713. doi:10.1210/jc.2006-2123

    CAS  PubMed  Google Scholar 

  49. González F, Rote NS, Minium J, Kirwan JP (2006) Increased activation of nuclear factor kB triggers inflammation and insulin resistance in polycystic ovary syndrome. J Clin Endocrinol Metab 91:1508–1512

    PubMed  Google Scholar 

  50. Piotrowski PC, Rzepczynska IJ, Kwintkiewicz J, Duleba AJ (2005) Oxidative stress induces expression of CYP11A, CYP17, STAR and 3bHSD in rat theca-interstitial cells. J Soc Gynecol Invest 12(2 Suppl):319A

    Google Scholar 

  51. González F, Minium J, Rote NS, Kirwan JP (2005) Hyperglycemia alters tumor necrosis factor-a release from mononuclear cells in women with polycystic ovary syndrome. J Clin Endocrinol Metab 90:5336–5342

    PubMed  Google Scholar 

  52. González F, Rote NS, Minium J, Kirwan JP (2006) In vitro evidence that hyperglycemia stimulates tumor necrosis factor-a release in obese women with polycystic ovary syndrome. J Endocrinol 188:521–529

    PubMed  Google Scholar 

  53. González F, Rote NS, Minium J, Kirwan JP (2006) Reactive oxygen species-induced oxidative stress in the development of insulin resistance and hyperandrogenism in polycystic ovary syndrome. J Clin Endocrinol Metab 91:336–340

    PubMed  Google Scholar 

  54. González F, Rote NS, Minium J, Kirwan JP (2009) Evidence of proatherogenic inflammation in polycystic ovary syndrome. Metabolism 58:954–962

    PubMed Central  PubMed  Google Scholar 

  55. Chazenbalk G, Trivax BS, Yildiz BO (2010) Regulation of adiponectin secretion by adipocytes in the polycystic ovary syndrome: role of tumor necrosis factor-{alpha}. J Clin Endocrinol Metab 95:935–942

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Carmina E, Orio F, Palomba S (2005) Evidence for altered adipocyte function in polycystic ovary syndrome. Eur J Endocrinol 152:389–394

    CAS  PubMed  Google Scholar 

  57. Chen X, Jia X, Qiao J, Guan Y, Kang J (2013) Adipokines in reproductive function: a link between obesity and polycystic ovary syndrome. J Mol Endocrinol 50:21–37

    CAS  Google Scholar 

  58. Carmina E (2013) Obesity, adipokines and metabolic syndrome in polycystic ovary syndrome. Front Horm Res 40:40–50

    CAS  PubMed  Google Scholar 

  59. Chabrolle C, Tosca L, Ramé C, Lecomte P, Royère D, Dupont J (2009) Adiponectin increases insulin-like growth factor l-induced progesterone and estradiol secretion in human granulosa cells. Fertil Steril 92:1988–1996

    CAS  PubMed  Google Scholar 

  60. Pusalkar M, Meherji P, Gokral J, Savardekar L, Chinnaraj S, Maitra A (2010) Obesity and polycystic ovary syndrome: association with androgens, leptin and its genotypes. Gynecol Endocrinol 26:874–882

    CAS  PubMed  Google Scholar 

  61. Comim FV, Hardy K, Franks S (2013) Adiponectin and its receptors in the ovary: further evidence for a link between obesity and hyperandrogenism in polycystic ovary syndrome. PLoS ONE 18(8):e80416

    Google Scholar 

  62. Panidis D, Kourtis A, Farmakiotis D, Mouslech T, Rousso D, Koliakos G (2003) Serum adiponectin levels in women with polycystic ovary syndrome. Hum Reprod 18:1790–1796

    CAS  PubMed  Google Scholar 

  63. Ardawi MS, Rouzi AA (2005) Plasma adiponectin and insulin resistance in women with polycystic ovary syndrome. Fertil Steril 83:1708–1716

    CAS  PubMed  Google Scholar 

  64. Escobar-Morreale HF, Villuendas G, Botella-Carretero JI, Alvarez-Blasco F, Sanchón R, Luque-Ramírez M, San Millán JL (2006) Adiponectin and resistin in PCOS: a clinical, biochemical and molecular genetic study. Hum Reprod 21(9):2257–2265

    CAS  PubMed  Google Scholar 

  65. Pinhas-Hamiel O, Singer S, Pilpel N, Koren I, Boyko V, Hemi R, Pariente C, Kanety H (2009) Adiponectin levels in adolescent girls with polycystic ovary syndrome (PCOS). Clin Endocrinol (Oxf) 71(6):823–827. doi:10.1111/j.1365-2265.2009.03604.x

    CAS  Google Scholar 

  66. Mannerås-Holm L, Leonhardt H, Kullberg J, Jennische E, Odén A, Holm G et al (2011) Adipose tissue has aberrant morphology and function in PCOS: enlarged adipocytes and low serum adiponectin, but not circulating sex steroids, are strongly associated with insulin resistance. J Clin Endocrinol Metab 96(2):E304–E311. doi:10.1210/jc.2010-1290

    PubMed  Google Scholar 

  67. Shin HY, Lee DC, Lee JW (2011) Adiponectin in women with polycystic ovary syndrome. Korean J Fam Med 32(4):243–248. doi:10.4082/kjfm.2011.32.4.243

    PubMed Central  PubMed  Google Scholar 

  68. Lecke SB, Mattei F, Morsch DM, Spritzer PM (2011) Abdominal subcutaneous fat gene expression and circulating levels of leptin and adiponectin in polycystic ovary syndrome. Fertil Steril 95(6):2044–2049. doi:10.1016/j.fertnstert.2011.02.041

    CAS  PubMed  Google Scholar 

  69. Toulis KA, Gouli DG, Farmakiotis D, Georgopoulos NA, Katsikis I, Tarlatzis BC, Papadima I, Panidis D (2009) Adiponectin levels in women with polycystic ovary syndrome: a systematic review and a meta-analysis. Hum Reprod Update 15:297–307. doi:10.1093/humupd/dmp006

    CAS  PubMed  Google Scholar 

  70. Yamauchi T, Kamon J, Ito Y et al (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423:762–769

    CAS  PubMed  Google Scholar 

  71. Hossam OH (2013) Role of adiponectin and its receptor in prediction of reproductive outcome of metformin treatment in patients with polycystic ovarian syndrome. J Obstet Gynaecol Res 39:1596–1603

    Google Scholar 

  72. Considine RV, Caro JF (1997) Leptin and the regulation of body weight. Int J Biochem Cell Biol 29:1255–1272

    CAS  PubMed  Google Scholar 

  73. Muoio DM, Lynis DG (2002) Peripheral metabolic actions of leptin. Best Pract Res Clin Endocrinol Metab 16:653–666

    CAS  PubMed  Google Scholar 

  74. Bjorbaek C, Kahn BB (2004) Leptin signaling in the central nervous system and the periphery. Recent Prog Horm Res 59:305–331

  75. Margetic S, Gazzola C, Pegg GG, Hill RA (2002) Leptin: a review of its peripheral actions and interactions. Int J Obes Relat Metab Disord 26:1407–1433

    CAS  PubMed  Google Scholar 

  76. Brzechffa PR, Jakimiuk AJ, Agarwal SK, Weitsman SR, Buyalos RP, Magoffin DA (1996) Serum immunoreactive leptin concentrations in women with polycystic ovary syndrome. J Clin Endocrinol Metab 81(11):4166–4169

    CAS  PubMed  Google Scholar 

  77. Vicennati V, Gambineri A, Calzoni F, Casimirri F, Macor C, Vettor R, Pasquali R (1998) Serum leptin in obese women with polycystic ovary syndrome is correlated with body weight and fat distribution but not with androgen and insulin levels. Metabolism 47(8):988–992

    CAS  PubMed  Google Scholar 

  78. Pehlivanov B, Mitkov M (2009) Serum leptin levels correlate with clinical and biochemical indices of insulin resistance in women with polycystic ovary syndrome. Eur J Contracept Reprod Health Care 14(2):153–159. doi:10.1080/13625180802549962

    CAS  PubMed  Google Scholar 

  79. Yildizhan R, Ilhan GA, Yildizhan B, Kolusari A, Adali E, Bugdayci G (2011) Serum retinol binding protein 4, leptin, and plasma asymmetric dimethylarginine levels in obese and non-obese young women with polycystic ovary syndrome. Fertil Steril 96:246–250

    CAS  PubMed  Google Scholar 

  80. Chapman IM, Wittert GA, Norman RJ (1997) Circulating leptin concentrations in polycystic ovary syndrome: relation to anthropometric and metabolic parameters. Clin Endocrinol (Oxf) 46(2):175–181

    CAS  Google Scholar 

  81. Rouru J, Anttila L, Koskinen P, Penttilä TA, Irjala K, Huupponen R, Koulu M (1997) Serum leptin concentrations in women with polycystic ovary syndrome. J Clin Endocrinol Metab 82(6):1697–1700

    CAS  PubMed  Google Scholar 

  82. Gennarelli G, Holte J, Wide L, Berne C, Lithell H (1998) Is there a role for leptin in the endocrine and metabolic aberrations of polycystic ovary syndrome? Hum Reprod 13(3):535–541

    CAS  PubMed  Google Scholar 

  83. Carmina E, Bucchieri S, Mansueto P, Rini G, Ferin M, Lobo RA (2009) Circulating levels of adipose products and differences in fat distribution in the ovulatory and anovulatory phenotypes of polycystic ovary syndrome. Fertil Steril 1(4 Suppl):1332–1335. doi:10.1016/j.fertnstert.2008.03.007

    Google Scholar 

  84. Wang P, Holst C, Astrup A et al (2012) Blood profiling of proteins and steroids during weight maintenance with manipulation of dietary protein level and glycaemic index. Br J Nutr 107:106–119

    CAS  PubMed  Google Scholar 

  85. Svendsen PF, Christiansen M, Hedley PL, Nilas L, Pedersen SB, Madsbad S (2012) Adipose expression of adipocytokines in women with polycystic ovary syndrome. Fertil Steril 98(1):235–241. doi:10.1016/j.fertnstert.2012.03.056

    CAS  PubMed  Google Scholar 

  86. Stofkova A (2010) Resistin and visfatin: regulators of insulin sensitivity, inflammation and immunity. Endocr Regul 44:25–36

    CAS  PubMed  Google Scholar 

  87. Tan BK, Chen J, Digby JE, Keay SD, Kennedy CR, Randeva HS (2006) Increased visfatin messenger ribonucleic acid and protein levels in adipose tissue and adipocytes in women with polycystic ovary syndrome: parallel increase in plasma visfatin. J Clin Endocrinol Metab 91(12):5022–5028

    CAS  PubMed  Google Scholar 

  88. Chan TF, Chen YL, Chen HH, Lee CH, Jong SB, Tsai EM (2007) Increased plasma visfatin concentrations in women with polycystic ovary syndrome. Fertil Steril 88(2):401–405

    CAS  PubMed  Google Scholar 

  89. Kowalska I, Straczkowski M, Nikolajuk A, Adamska A, Karczewska-Kupczewska M, Otziomek E, Wolczynski S, Gorska M (2007) Serum visfatin in relation to insulin resistance and markers of hyperandrogenism in lean and obese women with polycystic ovary syndrome. Hum Reprod 22(7):1824–1829

    CAS  PubMed  Google Scholar 

  90. Panidis D, Farmakiotis D, Rousso D, Katsikis I, Delkos D, Piouka A, Gerou S, Diamanti-Kandarakis E (2008) Plasma visfatin levels in normal weight women with polycystic ovary syndrome. Eur J Intern Med 19(6):406–412. doi:10.1016/j.ejim.2007.05.014

    CAS  PubMed  Google Scholar 

  91. Ozkaya M, Cakal E, Ustun Y, Engin-Ustun Y (2010) Effect of metformin on serum visfatin levels in patients with polycystic ovary syndrome. Fertil Steril 93(3):880–884. doi:10.1016/j.fertnstert.2008.10.058

    PubMed  Google Scholar 

  92. Plati E, Kouskouni E, Malamitsi-Puchner A, Boutsikou M, Kaparos G, Baka S (2010) Visfatin and leptin levels in women with polycystic ovaries undergoing ovarian stimulation. Fertil Steril 94(4):1451–1456. doi:10.1016/j.fertnstert.2009.04.055

    CAS  PubMed  Google Scholar 

  93. Seow KM, Hwang JL, Wang PH, Ho LT, Juan CC (2011) Expression of visfatin mRNA in peripheral blood mononuclear cells is not correlated with visfatin mRNA in omental adipose tissue in women with polycystic ovary syndrome. Hum Reprod 26(10):2869–2873. doi:10.1093/humrep/der267

    CAS  PubMed  Google Scholar 

  94. Spanos N, Tziomalos K, Macut D, Koiou E, Kandaraki EA, Delkos D, Tsourdi E, Panidis D (2012) Adipokines, insulin resistance and hyperandrogenemia in obese patients with polycystic ovary syndrome: cross-sectional correlations and the effects of weight loss. Obes Facts 5(4):495–504. doi:10.1159/000341579

    CAS  PubMed  Google Scholar 

  95. Güdücü N, İşçi H, Görmüş U, Yiğiter AB, Dünder I (2012) Serum visfatin levels in women with polycystic ovary syndrome. Gynecol Endocrinol 28(8):619–623. doi:10.3109/09513590.2011.650749

    PubMed  Google Scholar 

  96. Lajunen TK, Purhonen AK, Haapea M, Ruokonen A, Puukka K, Hartikainen AL et al (2012) Full-length visfatin levels are associated with inflammation in women with polycystic ovary syndrome. Eur J Clin Invest 42(3):321–328. doi:10.1111/j.1365-2362.2011.02586.x

    CAS  PubMed  Google Scholar 

  97. Olszanecka-Glinianowicz M, Madej P, Zdun D, Bożentowicz-Wikarek M, Sikora J, Chudek J, Skałba P (2012) Are plasma levels of visfatin and retinol-binding protein 4 (RBP4) associated with body mass, metabolic and hormonal disturbances in women with polycystic ovary syndrome? Eur J Obstet Gynecol Reprod Biol 162(1):55–61. doi:10.1016/j.ejogrb.2012.01.026

    CAS  PubMed  Google Scholar 

  98. Kasim-Karakas SE, Almario RU, Cunningham W (2009) Effects of protein versus simple sugar intake on weight loss in polycystic ovary syndrome (according to the National Institutes of Health criteria). Fertil Steril 92:262–270

    CAS  PubMed  Google Scholar 

  99. Moran LJ, Noakes M, Clifton PM, Wittert GA, Belobrajdic DP, Norman RJ (2007) C-reactive protein before and after weight loss in overweight women with and without polycystic ovary syndrome. J Clin Endocrinol Metab 92:2944–2951

    CAS  PubMed  Google Scholar 

  100. Stamets K, Taylor DS, Kunselman A, Demers LM, Pelkman CL, Legro RS (2004) A randomized trial of the effects of two types of short-term hypocaloric diets on weight loss in women with polycystic ovary syndrome. Fertil Steril 81:630–637

    CAS  PubMed  Google Scholar 

  101. Van Dam EW, Roelfsema F, Veldhuis JD, Helmerhorst FM, Frolich M, Meinders AE, Krans HM, Pijl H (2002) Increase in daily LH secretion in response to short-term calorie restriction in obese women with PCOS. Am J Physiol Endocrinol Metab 282:E865–E872

    PubMed  Google Scholar 

  102. Laughlin GA, Morales AJ, Yen SS (1997) Serum leptin levels in women with polycystic ovary syndrome: the role of insulin resistance/hyperinsulinemia. J Clin Endocrinol Metab 82:1692–1696

    CAS  PubMed  Google Scholar 

  103. Mantzoros CS, Dunaif A, Flier JS (1997) Leptin concentrations in the polycystic ovary syndrome. J Clin Endocrinol Metab 82:1687–1691

    CAS  PubMed  Google Scholar 

  104. Muneyvirci-Delale O, Nacharaju VL, Altura BM, Altura BT (1998) Sex steroid hormones modulate serum ionized magnesium and Ca levels throughout the menstrual cycle in women. Fertil Steril 69:958–962

    CAS  PubMed  Google Scholar 

  105. Rumawas ME, McKeown NM, Rogers G, Meigs JB, Wilson PWF, Jacques PF (2006) Magnesium intake is related to improved insulin homeostasis in the Framingham offspring cohort. J Am Coll Nutr 25:486–492

    CAS  PubMed  Google Scholar 

  106. Chakraborty P, Ghosh S, Goswami SK, Syed NK, Baidyanath C, Kuladip J (2013) Altered trace mineral milieu might play an aetiological role in the pathogenesis of polycystic ovary syndrome. Biol Trace Elem Res 152:9–15

    CAS  PubMed  Google Scholar 

  107. Kauffman RP, Tullar PE, Nipp RD, Castracane VD (2011) Serum magnesium concentrations and metabolic variables in polycystic ovary syndrome. Acta Obstet Gynecol Scand 90:452–458

    CAS  PubMed  Google Scholar 

  108. Kurdoglu Z, Kurdoglu M, Demir H, Sahin HG (2012) Serum trace elements and heavy metals in polycystic ovary syndrome. Hum Exp Toxicol 31(5):452–456. doi:10.1177/0960327111424299

    CAS  PubMed  Google Scholar 

  109. Kelly CC, Lyall H, Petrie JR, Gould GW, Connell JMC, Sattar N (2001) Low grade chronic inflammation in women with polycystic ovary syndrome. J Clin Endocrinol Metab 86:2453–2455

    CAS  PubMed  Google Scholar 

  110. Slesinski RS, Clarke JJ, San RH, Gudi R (2005) Lack of mutagenicity of chromium picolinate in the hypoxanthine phosphoribosyltransferase gene mutation assay in Chinese hamster ovary cells. Mutat Res 585:86–95

    CAS  PubMed  Google Scholar 

  111. Cefalu WT, Hu FB (2004) Role of chromium in human health and in diabetes. Diabetes Care 11:2741–2751

    Google Scholar 

  112. Jeejeebhoy KN, Chu RC, Marliss EB, Greenberg GR, Bruce-Robertson A (1977) Chromium deficiency, glucose intolerance, and neuropathy reversed by chromium supplementation, in a patient receiving long-term total parenteral nutrition. Am J Clin Nutr 30:531–538

    CAS  PubMed  Google Scholar 

  113. Mertz W (1998) Chromium research from a distance: from 1959 to 1980. J Am Coll Nutr 17:544–547

    CAS  PubMed  Google Scholar 

  114. Davis CM, Vincent JB (1997) Chromium oligopeptide activates insulin receptor tyrosine kinase activity. Biochemistry 36:4382–4385

    CAS  PubMed  Google Scholar 

  115. Vincent JB (1999) Mechanisms of chromium action: low-molecular-weight chromium-binding substance. J Am Coll Nutr 18:6–12

    CAS  PubMed  Google Scholar 

  116. Morris BW, MacNeil S, Hardisty CA, Heller S, Burgin C, Gray TA (1999) Chromium homeostasis in patients with type II (NIDDM) diabetes. J Trace Elem Med Biol 13:57–61

    CAS  PubMed  Google Scholar 

  117. Lydic ML, McNurlan M, Bembo S, Mitchell L, Komaroff E, Gelato M (2006) Chromium picolinate improves insulin sensitivity in obese subjects with polycystic ovary syndrome. Fertil Steril 86:243–246

    CAS  PubMed  Google Scholar 

  118. Verstuyf A, Carmeliet G, Bouillon R, Mathieu C (2010) Vitamin D: a pleiotropic hormone. Kidney Int 78:140–145

    CAS  PubMed  Google Scholar 

  119. Alvarez JA, Ashraf A (2010) Role of vitamin D in insulin secretion and insulin sensitivity for glucose homeostasis. Int J Endocrinol 2010:351–385

    Google Scholar 

  120. Ngo DT, Chan WP, Rajendran S et al (2011) Determinants of insulin responsiveness in young women: impact of polycystic ovarian syndrome, nitric oxide, and vitamin D. Nitric Oxide 25:326–330

    CAS  PubMed  Google Scholar 

  121. Ortlepp JR, Metrikat J, Albrecht M, von Korff A, Hanrath P, Hoffmann R (2003) The vitamin D receptor gene variant and physical activity predicts fasting glucose levels in healthy young men. Diabet Med 20:451–454

    CAS  PubMed  Google Scholar 

  122. Bourlon PM, Billaudel B, Faure-Dussert A (1999) Influence of vitamin D3 deficiency and 1, 25 dihydroxyvitamin D3 on de novo insulin biosynthesis in the islets of the rat endocrine pancreas. J Endocrinol 160:87–95

    CAS  PubMed  Google Scholar 

  123. Chiu KC, Chu A, Go VL, Saad MF (2004) Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am J Clin Nutr 79:820–825

    CAS  PubMed  Google Scholar 

  124. Thomson RL, Spedding S, Buckley JD (2012) Vitamin D in the aetiology and management of polycystic ovary syndrome. Clin Endocrinol 7:343–350

    Google Scholar 

  125. Homburg R, Amsterdam A (1998) Polycystic ovary syndrome—loss of the apoptotic mechanism in the ovarian follicles? J Endocrinol Invest 21:552–557

    CAS  PubMed  Google Scholar 

  126. Bikle D (2009) Nonclassic actions of vitamin D. J Clin Endocrinol Metab 94:26–34

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Shoelson SE, Herrero L, Naaz A (2007) Obesity, inflammation, and insulin resistance. Gastroenterology 132:2169–2180

    CAS  PubMed  Google Scholar 

  128. Yildizhan R, Kurdoglu M, Adali E et al (2009) Serum 25-hydroxyvitamin D concentrations in obese and non-obese women with polycystic ovary syndrome. Arch Gynecol Obstet 280:559–563

    PubMed  Google Scholar 

  129. Pal L, Berry A, Coraluzzi L (2012) Therapeutic implications of vitamin D and calcium in overweight women with polycystic ovary syndrome. Gynecol Endocrinol 28:965–968

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Wehr E, Pieber TR, Obermayer-Pietsch B (2011) Effect of vitamin D3 treatment on glucose metabolism and menstrual frequency in polycystic ovary syndrome women: a pilot study. J Endocrinol Invest 34:757–763

    CAS  PubMed  Google Scholar 

  131. Selimoglu H, Duran C, Kiyici S, Ersoy C, Guclu M, Ozkaya G, Tuncel E, Erturk E, Imamoglu S (2010) The effect of vitamin D replacement therapy on insulin resistance and androgen levels in women with polycystic ovary syndrome. J Endocrinol Invest 33:234–238

    CAS  PubMed  Google Scholar 

  132. Kasim-Karakas SE, Almario RU, Gregory L, Wong R, Todd H, Lasley BL (2004) Metabolic and endocrine effects of a polyunsaturated fatty acid-rich diet in polycystic ovary syndrome. J Clin Endocrinol Metab 89:615–620

    CAS  PubMed  Google Scholar 

  133. Oh R (2005) Practical applications of fish oil (Omega-3 fatty acids) in primary care. J Am Board Fam Pract 18:28–36

    PubMed  Google Scholar 

  134. Ebbesson SO, Risica PM, Ebbesson LO, Kennish JM, Tejero ME (2005) Omega-3 fatty acids improve glucose tolerance and components of the metabolic syndrome in Alaskan Eskimos: the Alaska Siberia project. Int J Circumpolar Health 64:396–408

    PubMed  Google Scholar 

  135. Rafraf M, Mohammadi E, Asghari-Jafarabadi M, Farzadi L (2012) Omega-3 fatty acids improve glucose metabolism without effects on obesity values and serum visfatin levels in women with polycystic ovary syndrome. J Am Coll Nutr 31:361–368

    CAS  PubMed  Google Scholar 

  136. Kratz M, Swarbrick MM, Callahan HS, Matthys CC, Havel PJ, Weigle DS (2008) Effect of dietary n-3 polyunsaturated fatty acids on plasma total and high-molecular-weight adiponectin concentrations in overweight to moderately obese men and women. Am J Clin Nutr 87:347–353

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Mohammadi E, Rafraf M, Farzadi L, Asghari-Jafarabadi M, Sabour S (2012) Effects of omega-3 fatty acids supplementation on serum adiponectin levels and some metabolic risk factors in women with polycystic ovary syndrome. Asia Pac J Clin Nutr 21(4):511–518

    CAS  PubMed  Google Scholar 

  138. Gillies CL, Abrams KR, Lambert PC et al (2007) Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ 334:299

    PubMed Central  PubMed  Google Scholar 

  139. Colberg SR, Albright AL, Blissmer BJ et al (2010) Exercise and type 2 diabetes: American College of Sports Medicine and the American Diabetes Association: joint position statement. Exercise and type 2 diabetes. Med Sci Sports Exerc 42:2282–2303

    PubMed  Google Scholar 

  140. Lee S, Kuk JL, Davidson LE et al (2005) Exercise without weight loss is an effective strategy for obesity reduction in obese individuals with and without Type 2 diabetes. J Appl Physiol 99:1220–1225

    PubMed  Google Scholar 

  141. Moran LJ, Pasquali R, Teede HJ, Hoeger KM, Norman RJ (2009) Treatment of obesity in polycystic ovary syndrome: a position statement of the Androgen Excess and Polycystic Ovary Syndrome Society. Fertil Steril 92:1966–1982

    PubMed  Google Scholar 

  142. Bianchi C, Miccoli R, Penno G, Del Prato S (2008) Primary prevention of cardiovascular disease in people with dysglycemia. Diabetes Care 31:208–214

    Google Scholar 

  143. Kiddy DS, Hamilton-Fairley D, Bush A et al (1992) Improvement in endocrine and ovarian function during dietary treatment of obese women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 36:105–111

    CAS  Google Scholar 

  144. Clark AM, Ledger W, Galletly C et al (1995) Weight loss results in significant improvement in pregnancy and ovulation rates in anovulatory obese women. Hum Reprod 10:2705–2712

    CAS  PubMed  Google Scholar 

  145. Thomson RL, Buckley JD, Moran LJ, Noakes M, Clifton PM, Norman RJ, Brinkworth GD (2009) The effect of weight loss on anti-Müllerian hormone levels in overweight and obese women with polycystic ovary syndrome and reproductive impairment. Hum Reprod 24:1976–1981

    CAS  PubMed  Google Scholar 

  146. Holte J, Bergh T, Berne C, Wide L, Lithell H (1995) Restored insulin sensitivity but persistently increased early insulin secretion after weight loss in obese women with polycystic ovary syndrome. J Clin Endocrinol Metab 80:2586–2593

    CAS  PubMed  Google Scholar 

  147. Moran LJ, Hutchison SK, Norman RJ, Teede HJ (2011) Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database Syst Rev 7:CD007506. doi:10.1002/14651858.CD007506

  148. Moran LJ, Ko H, Misso M, Marsh K, Noakes M, Talbot M et al (2013) Dietary composition in the treatment of polycystic ovary syndrome: a systematic review to inform evidence-based guidelines. J Acad Nutr Diet 113(4):520–545. doi:10.1016/j.jand.2012.11.018

    PubMed  Google Scholar 

  149. Douglas CC, Gower BA, Darnell BE, Ovalle F, Oster RA, Azziz R (2006) Role of diet in the treatment of polycystic ovary syndrome. Fertil Steril 85:679–688

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Mehrabani HH, Salehpour S, Amiri Z, Farahani SJ, Meyer BJ, Tahbaz F (2012) Beneficial effects of a high-protein, low-glycemic-load hypocaloric diet in overweight and obese women with polycystic ovary syndrome: a randomized controlled intervention study. J Am Coll Nutr 31:117–125

    CAS  PubMed  Google Scholar 

  151. Graff SK, Mário FM, Alves BC, Spritzer PM (2013) Dietary glycemic index is associated with less favorable anthropometric and metabolic profiles in polycystic ovary syndrome women with different phenotypes. Fertil Steril 100:1081–1088

    CAS  PubMed  Google Scholar 

  152. Leidy HJ, Racki EM (2010) The addition of a protein-rich breakfast and its effects on acute appetite control and food intake in ‘breakfast-skipping’ adolescents. Int J Obes 34:1125–1133

    CAS  Google Scholar 

  153. Zumoff B, Freeman R, Coupey S, Saenger P, Markowitz M, Kream J (1983) A chronobiologic abnormality in luteinizing hormone secretion in teenage girls with the polycystic-ovary syndrome. N Engl J Med 309:1206–1209

    CAS  PubMed  Google Scholar 

  154. Prelevic GM, Wurzburger MI, Balint-Peric L (1993) 24-hour serum cortisol profiles in women with polycystic ovary syndrome. Gynecol Endocrinol 7:179–184

    CAS  PubMed  Google Scholar 

  155. Domecq JP, Prutsky G, Mullan RJ, Hazem A, Sundaresh V, Elamin MB, Phung OJ, Wang A, Hoeger K, Pasquali R, Erwin P, Bodde A, Montori VM, Murad MH (2013) Lifestyle modification programs in polycystic ovary syndrome: Systematic review and meta-analysis. J Clin Endocrinol Metab 98(12):4655–4663. doi:10.1210/jc.2013-2385

  156. Brown AJ, Setji TL, Sanders LL, Lowry KP, Otvos JD, Kraus WE, Svetkey PL (2009) Effects of exercise on lipoprotein particles in women with polycystic ovary syndrome. Med Sci Sports Exerc 41:497–504

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Guzick DS, Wing R, Smith D, Berga SL, Winters SJ (1994) Endocrine consequences of weight loss in obese, hyperandrogenic, anovulatory women. Fertility, Sterility 61:598–604

    CAS  Google Scholar 

  158. Hoeger KM, Kochman L, Wixom N, Craig K, Miller RK, Guzick DS (2004) A randomized, 48-week, placebo-controlled trial of intensive lifestyle modification and/or metformin therapy in overweight women with polycystic ovary syndrome: a pilot study. Fertil Steril 82:421–429

    CAS  PubMed  Google Scholar 

  159. Hoeger K, Davidson K, Kochman L, Cherry T, Kopin L, Guzick DS (2008) The impact of metformin, oral contraceptives, and lifestyle modification on polycystic ovary syndrome in obese adolescent women in two randomized, placebo-controlled clinical trials. J Clin Endocrinol Metab 93:4299–4306

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Karimzadeh MA, Javedani M (2010) An assessment of lifestyle modification versus medical treatment with clomiphene citrate, metformin, and clomiphene citrate-metformin in patients with polycystic ovary syndrome. Fertil Steril 94:216–220

    CAS  PubMed  Google Scholar 

  161. Palomba S, Falbo A, Giallauria F, Russo T, Rocca M, Tolino A, Zullo F, Orio F (2010) Six weeks of structured exercise training and hypocaloric diet increases the probability of ovulation after clomiphene citrate in overweight and obese patients with polycystic ovary syndrome: a randomized controlled trial. Hum Reprod 25:2783–2791

    CAS  PubMed  Google Scholar 

  162. Qublan HS, Yannakoula EK, Al-Qudah MA, El-Uri FI (2007) Dietary intervention versus metformin to improve the reproductive outcome in women with polycystic ovary syndrome. A prospective comparative study. Saudi Med J 28:1694–1699

    PubMed  Google Scholar 

  163. Stener-Victorin E, Jedel E, Janson PO, Sverrisdottir YB (2009) Low-frequency electroacupuncture and physical exercise decrease high muscle sympathetic nerve activity in polycystic ovary syndrome. Am J Physiol Regul Integr Comp Physiol 297:R387–R395

    CAS  PubMed  Google Scholar 

  164. Vigorito C, Giallauria F, Palomba S, Cascella T, Manguso F, Lucci R, De Lorenzo A, Tafuri D, Lombardi G, Colao A, Orio F (2007) Beneficial effects of a three-month structured exercise training program on cardiopulmonary functional capacity in young women with polycystic ovary syndrome. J Clin Endocrinol Metab 92:1379–1384

Download references

Conflict of interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariangela Rondanelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rondanelli, M., Perna, S., Faliva, M. et al. Focus on metabolic and nutritional correlates of polycystic ovary syndrome and update on nutritional management of these critical phenomena. Arch Gynecol Obstet 290, 1079–1092 (2014). https://doi.org/10.1007/s00404-014-3433-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-014-3433-z

Keywords

Navigation