Skip to main content
Log in

Development of noninvasive prenatal diagnosis of trisomy 21 by RT-MLPA with a new set of SNP markers

  • Maternal-Fetal Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Introduction

Placental mRNA can now be detected in maternal whole blood, raising the possibility of using maternal blood for noninvasive prenatal diagnosis (NIPD) of trisomy 21. We aimed to identify new mRNA-single nucleotide polymorphism (mRNA-SNP) markers suitable for use in reverse-transcriptase multiplex ligation-dependent probe amplification (RT-MLPA) to develop a more reliable diagnostic method for trisomy 21 in Chinese subjects.

Materials and methods

Using sequencing, we determined the status of SNPs in genes expressed in the placenta and calculated their heterozygote frequencies to determine which loci were suitable for use in RT-MLPA. Cell-free fetal RNA was extracted from peripheral blood samples of 246 women at 12–24 weeks of pregnancy, and the SNP loci selected were analyzed by RT-MLPA, followed by capillary electrophoresis. Karyotype analyses were used to confirm the diagnosis of trisomy 21.

Results

As compared with karyotype analysis, the diagnostic sensitivity and specificity of RT-MLPA were excellent (95 and 100 % in different gestational weeks).

Conclusion

The RT-MLPA technique is a suitable and reliable method for the diagnosis of trisomy 21. Use of RT-MLPA with the SNP markers described here shows good specificity, high sensitivity, and high throughput potential, making this technique suitable for NIPD in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Malone FD, Canick JA, Ball RH et al (2005) First-trimester or second-trimester screening, or both, for Down’s syndrome. N Engl J Med 353:2001–2011

    Article  CAS  PubMed  Google Scholar 

  2. Wright CF, Burton H (2009) The use of cell-free fetal nucleic acids in maternal blood for non-invasive prenatal diagnosis. Hum Reprod Update 15:139–151

    Article  CAS  PubMed  Google Scholar 

  3. Mujezinovic F, Alfirevic Z (2007) Procedure-related complications of amniocentesis and chorionic villous sampling: a systematic review. Obstet Gynecol 110:687–694

    Article  PubMed  Google Scholar 

  4. Chiu RW, Chan KC, Gao Y et al (2008) Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc Nat Aca Sci USA 105:20458–20463

    Article  CAS  Google Scholar 

  5. Lun FM, Tsui NB, Chan KC et al (2008) Noninvasive prenatal diagnosis of monogenic diseases by digital size selection and relative mutation dosage on DNA in maternal plasma. Proc Nat Aca Sci USA 105:19920–19925

    Article  CAS  Google Scholar 

  6. Lo YM, Corbetta N, Chamberlain PF et al (1997) Presence of fetal DNA in maternal plasma and serum. Lancet 350:485–487

    Article  CAS  PubMed  Google Scholar 

  7. Farina A, Chan CW, Chiu RW et al (2004) Circulating corticotropin-releasing hormone mRNA in maternal plasma: relationship with gestational age and severity of preeclampsia. Clin Chem 50:1851–1854

    Article  CAS  PubMed  Google Scholar 

  8. Lo YM, Tsui NB, Chiu RW et al (2007) Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detection. Nat Med 13:218–223

    Article  CAS  PubMed  Google Scholar 

  9. Tsui NB, Chim SS, Chiu RW et al (2004) Systematic micro-array based identification of placental mRNA in maternal plasma: towards non-invasive prenatal gene expression profiling. J Med Genet 41:461–467

    Article  CAS  PubMed  Google Scholar 

  10. Schouten JP, McElgunn CJ, Waaijer R et al (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 30:e57

    Article  PubMed Central  PubMed  Google Scholar 

  11. Boormans EM, Birnie E, Wildschut HI et al (2008) Multiplex ligation-dependent probe amplification versus karyotyping in prenatal diagnosis: the M.A.K.E. study. BMC Pregnancy Childbirth 8:18

    Article  PubMed Central  PubMed  Google Scholar 

  12. Deng YH, Yin AH, He Q et al (2011) Non-invasive prenatal diagnosis of trisomy 21 by reverse transcriptase multiplex ligation-dependent probe amplification. Clin Chem Lab Med 49:641–646

    Article  CAS  PubMed  Google Scholar 

  13. Diego-Alvarez D, Ramos-Corrales C, Garcia-Hoyos M et al (2006) Double trisomy in spontaneous miscarriages: cytogenetic and molecular approach. Hum Reprod 21:958–966 (Oxford, England)

    Article  CAS  PubMed  Google Scholar 

  14. Hochstenbach R, Meijer J, van de Brug J et al (2005) Rapid detection of chromosomal aneuploidies in uncultured amniocytes by multiplex ligation-dependent probe amplification (MLPA). Prenatal Diag 25:1032–1039

    Article  CAS  PubMed  Google Scholar 

  15. Go AT, Visser A, Mulders MA et al (2007) 44 single-nucleotide polymorphisms expressed by placental RNA: assessment for use in noninvasive prenatal diagnosis of trisomy 21. Clin Chem 53:2223–2224

    Article  CAS  PubMed  Google Scholar 

  16. Liao X, Lochhead P, Nishihara R et al (2012) Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N Engl J Med 367:1596–1606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Mavrou A, Kouvidi E, Antsaklis A et al (2007) Identification of nucleated red blood cells in maternal circulation: a second step in screening for fetal aneuploidies and pregnancy complications. Prenatal Diag 27:150–153

    Article  CAS  PubMed  Google Scholar 

  18. Wapner RJ (2005) Invasive prenatal diagnostic techniques. Semin Perinatol 29:401–404

    Article  PubMed  Google Scholar 

  19. Amor DJ, Neo WT, Waters E et al (2006) Health and developmental outcome of children following prenatal diagnosis of confined placental mosaicism. Prenatal Diag 26:443–448

    Article  PubMed  Google Scholar 

  20. Eldering E, Spek CA, Aberson HL et al (2003) Expression profiling via novel multiplex assay allows rapid assessment of gene regulation in defined signalling pathways. Nucleic Acids Res 31:e153

    Article  PubMed Central  PubMed  Google Scholar 

  21. Tsui NB, Wong BC, Leung TY et al (2009) Non-invasive prenatal detection of fetal trisomy 18 by RNA-SNP allelic ratio analysis using maternal plasma SERPINB2 mRNA: a feasibility study. Prenatal Diag 29:1031–1037

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by The Medical and Scientific Fund from Guangdong Province (Grant No. B2009076), The Scientific Plan Fund from Guangdong Province (Grant No. 2009B060700107) and The Doctor Development Fund in Guangzhou Medical University (Grant No. L95042).

Conflict of interest

There are no conflicts of interest regarding this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-ying Hou.

Additional information

P. Li and J. Zhang contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Pq., Zhang, J., Fan, Jh. et al. Development of noninvasive prenatal diagnosis of trisomy 21 by RT-MLPA with a new set of SNP markers. Arch Gynecol Obstet 289, 67–73 (2014). https://doi.org/10.1007/s00404-013-2926-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-013-2926-5

Keywords

Navigation