Advertisement

Archives of Gynecology and Obstetrics

, Volume 288, Issue 5, pp 1045–1049 | Cite as

Copeptin concentrations are not elevated in gestational diabetes mellitus

  • Mahmut Oncul
  • Abdullah Tuten
  • Mine KucurEmail author
  • Metehan Imamoglu
  • Ozlem Balcı Ekmekci
  • Abdullah Serdar Acıkgoz
  • Rıza Madazlı
Maternal-Fetal Medicine

Abstract

Purpose

To investigate copeptin levels in women with GDM and women with uncomplicated pregnancies.

Methods

This case–control study was conducted on 45 women with GDM and 40 women with uncomplicated pregnancies. The maternal serum levels of copeptin were measured with enzyme-linked immunosorbent assay.

Results

Copeptin levels were not different among groups (0.93 ± 0.75 vs. 1.15 ± 0.93 ng/ml, p: 0.24). HOMA-IR and insulin levels were significantly higher in woman with GDM when compared with control group (2.90 ± 1.88 vs. 1.91 ± 0.50, p: 0.002; 11.74 ± 6.43 vs. 8.52 ± 2.28, p: 0.004, respectively). The copeptin concentrations were significantly correlated with insulin levels and HOMA-IR values (r = 0.329 p = 0.002, r = 0.289 p = 0.007, respectively).

Conclusions

The present study shows that serum copeptin concentrations did not differ in woman with GDM and non-GDM patients. However, we found a significant correlation between copeptin and HOMA-IR. Future studies are needed with larger populations in gestational diabetic patients on copeptin secretion, metabolism and action.

Keywords

Gestational diabetes mellitus Copeptin Insulin resistance 

Notes

Conflict of interest

Authors declare no conflict of interest.

References

  1. 1.
    Buchanan TA, Xiang AH (2005) Gestational diabetes mellitus. J Clin Investig 115:485–491PubMedGoogle Scholar
  2. 2.
    Catalano PM, Kirwan JP, King J (2003) Gestational diabetes and insulin resistance: role in short- and long-term implications for mother and fetus. J Nutr 133:1674–1683Google Scholar
  3. 3.
    Pallardo F, Herranz L, Garcia-Ingelmo T, Grande C, Martin-Vaquero P, Jañez M, Gonzalez A (1999) Early postpartum metabolic assessment in women with prior gestational diabetes. Diabetes Care 22:1053–1058PubMedCrossRefGoogle Scholar
  4. 4.
    Retnakaran R, Qi Y, Sermer M, Connelly PW, Hanley AJ, Zinman B (2008) Glucose intolerance in pregnancy and future risk of prediabetes or diabetes. Diabetes Care 31(10):2026–2031PubMedCrossRefGoogle Scholar
  5. 5.
    Albareda M, Caballero A, Badell G, Piquer S, Ortiz A, de Leiva A, Corcoy R (2003) Diabetes and abnormal glucose tolerance in women with previous gestational diabetes. Diabetes Care 26:1199–1205PubMedCrossRefGoogle Scholar
  6. 6.
    Sattar N, Greer IA (2002) Pregnancy complications and maternal cardiovascular risk: opportunities for intervention and screening? BMJ 325:157–160PubMedCrossRefGoogle Scholar
  7. 7.
    Xiang AH, Peters RK, Trigo E, Kjos SL, Lee WP, Buchanan TA (1999) Multiple metabolic defects during late pregnancy in women at high risk for type 2 diabetes. Diabetes 48:848–854PubMedCrossRefGoogle Scholar
  8. 8.
    Dunser MW, Wenzel V, Mayr AJ et al (2003) Management of vasodilatory shock: defining the role of arginine vasopressin. Drugs 63:237–256PubMedCrossRefGoogle Scholar
  9. 9.
    Morgenthaler NG, Struck J, Alonso C et al (2006) Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem 52:112–119PubMedCrossRefGoogle Scholar
  10. 10.
    Struck J, Morgenthaler NG, Bergmann A (2005) Copeptin, a stable peptide derived from the vasopressin precursor, is elevated in serum of sepsis patients. Peptides 26:2500–2504PubMedCrossRefGoogle Scholar
  11. 11.
    Siami S, Bailly-Salin J, Polito A et al (2010) Osmoregulation of vasopressin secretion is altered in the post-acute phase of septic shock. Crit Care Med 38:1962–1969PubMedGoogle Scholar
  12. 12.
    Ghali JK, Tam SW (2010) The critical link of hypervolemia and hyponatremia in heart failure and the potential role of arginine vasopressin antagonists. J Card Fail 16:419–431PubMedCrossRefGoogle Scholar
  13. 13.
    Morgenthaler NG, Müller B, Struck J, Bergmann A, Redl H, Christ-Crain M (2007) Copeptin, a stable peptide of the arginine vasopressin precursor, is elevated in hemorrhagic and septic shock. Shock 28(2):219–226PubMedCrossRefGoogle Scholar
  14. 14.
    Katan M, Morgenthaler N, Widmer I, Puder JJ, König C, Müller B, Christ-Crain M (2008) Copeptin, a stable peptide derived from the vasopressin precursor, correlates with the individual stress level. Neuro Endocrinol Lett 29(3):341–346PubMedGoogle Scholar
  15. 15.
    Bjorntorp P, Rosmond R (1999) Hypothalamic origin of the metabolic syndrome X. Ann NY Acad Sci 892:297–307PubMedCrossRefGoogle Scholar
  16. 16.
    Saleem U, Khaleghi M, Morgenthaler NG, Bergmann A, Struck J, Mosley TH Jr, Kullo IJ (2009) Plasma carboxy-terminal pro-vasopressin (copeptin): a novel marker of insulin resistance and metabolic syndrome. J Clin Endocrinol Metab 94:2558–2564PubMedCrossRefGoogle Scholar
  17. 17.
    Carpenter MW, Coustan DR (1982) Criteria for screening tests for gestational diabetes. Am J Obstet Gynecol 144:768–773PubMedGoogle Scholar
  18. 18.
    Matthews DR, Hosker JP, Rudenski AS et al (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419PubMedCrossRefGoogle Scholar
  19. 19.
    Katan M, Müler B, Crain MC (2008) Copeptin: a new and promising diagnostic and prognostic marker. Crit Care 12:117–118PubMedCrossRefGoogle Scholar
  20. 20.
    Morgenthaler NG (2010) Copeptin: a biomarker of cardiovascular and renal function. Congest Heart Fail 16:S37–S44PubMedCrossRefGoogle Scholar
  21. 21.
    Zulfikaroglu E, Islimye M, Tonguc EA, Payasli A, Isman F, Var T, Danisman N (2011) Circulating levels of copeptin, a novel biomarker in pre-eclampsia. J Obstet Gynaecol Res 37:1198–1202PubMedCrossRefGoogle Scholar
  22. 22.
    Schlapbach LJ, Frey S, Bigler S, Manh-Nhi C, Aebi C, Nelle M, Nuoffer JM (2011) Copeptin concentration in cord blood in infants with early-onset sepsis, chorioamnionitis and perinatal asphyxia. BMC Pediatr 19(11):38CrossRefGoogle Scholar
  23. 23.
    Foda AA, Abdel Aal IA (2012) Maternal and neonatal copeptin levels at cesarean section and vaginal delivery. Eur J Obstet Gynecol Reprod Biol 165:215–218PubMedCrossRefGoogle Scholar
  24. 24.
    Reaven GM, Lithell H, Landsberg L (1996) Hypertension and associated metabolic abnormalities—the role of insulin resistance and the sympathoadrenal system. N Engl J Med 334:374–381PubMedCrossRefGoogle Scholar
  25. 25.
    Lain KY, Catalano PM (2007) Metabolic changes in pregnancy. Clin Obstet Gynecol 50:938–948PubMedCrossRefGoogle Scholar
  26. 26.
    Lindsay JR, Nieman LK (2005) The hypothalamic-pituitary-adrenal axis in pregnancy: challenges in disease detection and treatment. Endocr Rev 26:775–799PubMedCrossRefGoogle Scholar
  27. 27.
    Wilson EA, Finn AE, Rayburn W, Jawad MJ (1979) Corticosteroid-binding globulin and estrogens in maternal and cord blood. Am J Obstet Gynecol 135:215–218PubMedGoogle Scholar
  28. 28.
    Scott EM, McGarrigle HH, Lachelin GC (1990) The increase in plasma and saliva cortisol levels in pregnancy is not due to the increase in corticosteroid-binding globulin levels. J Clin Endocrinol Metab 71:639–644PubMedCrossRefGoogle Scholar
  29. 29.
    Carr BR, Parker CR Jr, Madden JD, MacDonald PC, Porter JC (1981) Maternal plasma adrenocorticotropin and cortisol relationships throughout human pregnancy. Am J Obstet Gynecol 139:416–422PubMedGoogle Scholar
  30. 30.
    Cousins L, Rigg L, Hollingsworth D, Meis P, Halberg F, Brink G, Yen SS (1983) Qualitative and quantitative assessment of the circadian rhythm of cortisol in pregnancy. Am J Obstet Gynecol 145:411–416PubMedGoogle Scholar
  31. 31.
    Nolten WE, Lindheimer MD, Rueckert PA, Oparil S, Ehrlich EN (1980) Diurnal patterns and regulation of cortisol secretion in pregnancy. J Clin Endocrinol Metab 51:466–472PubMedCrossRefGoogle Scholar
  32. 32.
    Nolten WE, Rueckert PA (1981) Elevated free cortisol index in pregnancy: possible regulatory mechanisms. Am J Obstet Gynecol 139:492–498PubMedGoogle Scholar
  33. 33.
    Lehrke M, Broedl UC, Biller-Friedmann IM, Vogeser M, Henschel V, Nassau K, Göke B, Kilger E, Parhofer KG (2008) Serum concentrations of cortisol, interleukin 6, leptin and adiponectin predict stress induced insulin resistance in acute inflammatory reactions. Crit Care 12(6):R157PubMedCrossRefGoogle Scholar
  34. 34.
    Enhörning S, Wang TJ, Nilsson PM, Almgren P, Hedblad B, Berglund G, Struck J, Morgenthaler NG, Bergmann A, Lindholm E, Groop L, Lyssenko V, Orho-Melander M, Newton-Cheh C, Melander O (2010) Plasma copeptin and the risk of diabetes mellitus. Circulation 121:2102–2108PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mahmut Oncul
    • 1
  • Abdullah Tuten
    • 1
  • Mine Kucur
    • 2
    Email author
  • Metehan Imamoglu
    • 1
  • Ozlem Balcı Ekmekci
    • 2
  • Abdullah Serdar Acıkgoz
    • 1
  • Rıza Madazlı
    • 1
  1. 1.Department of Obstetrics and GynecologyIstanbul University, Cerrahpasa Medical FacultyIstanbulTurkey
  2. 2.Department of Medical BiochemistryIstanbul University, Cerrahpasa Medical FacultyIstanbulTurkey

Personalised recommendations