Skip to main content
Log in

Nucleotide variations in mitochondrial DNA and supra-physiological ROS levels in cytogenetically normal cases of premature ovarian insufficiency

  • Reproductive Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Premature ovarian insufficiency (POI) is defined as the cessation of ovarian function under the age of 40 years and is characterized by amenorrhea, hypoestrogenism, and elevated serum gonadotrophin concentration (FSH). It is a heterogeneous disorder with a multicausal pathogenesis; however, majority of cases are idiopathic. In idiopathic POI, involvement of unknown mechanisms may increase rate of oocyte apoptosis. Studies have shown that elevated reactive oxygen species (ROS) levels affect the quality of gametes. Mitochondrial mutations in different complexes of electron transport chain have been reported to disrupt the electron flow which lead to formation of more superoxide ions or increased levels of ROS. This study was aimed to screen the mitochondrial genome for variations in idiopathic POI (n = 25) and occult ovarian insufficiency (OI) (n = 5) patients. 30 patients diagnosed with POI and occult OI were enrolled in this study. Blood samples were collected from the patients and controls. DNA was extracted using phenol chloroform method. A total of 102 nucleotide variations were observed in patients as compared with 58 nucleotide variations in controls. 24% variations were found to be non-synonymous and 76% were synonymous. It was found that 48% variations were in complex I, 8% in complex III, 24% in complex IV, and 20% in complex V of electron transport chain. We found most of the non-synonymous mitochondrial variations in complex I (48%) of the respiratory chain which is the largest enzyme complex and is associated with oxidative stress. Some non-synonymous pathogenic alterations (p.M31T, p.W239C, p.L128Q) and non pathogenic alterations (ATPase6:p.T53I, ATPase6:p.L190F, ATPase6:p.L199L) were found to be significantly higher in cases as compared with controls. The preliminary data suggest that the mitochondrial mutations and subsequent decline in ATP levels may accelerate follicular atresia and lead to POI. The results of this preliminary study highlight the need to extend this study by analyzing large number of samples in different ethnic populations and analyze for ROS levels and mitochondrial mutations in oocytes as they are of different embryonic origin and develop in a different microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Coulam CB, Adamson SC, Annegers JF (1986) Incidence of premature ovarian insufficiency. Obstet Gynecol 67:604–606

    CAS  PubMed  Google Scholar 

  2. Goswami D, Conway GS (2005) Premature ovarian failure. Hum Reprod Update 11(4):391–410

    Article  CAS  PubMed  Google Scholar 

  3. Venkatesh S, Kumar M, Sharma A, Kriplani A, Ammini AC, Talwar P, Agarwal A, Dada R (2010) Oxidative stress and ATPase6 mutation is associated with primary ovarian insufficiency. Arch Gynecol Obstet. doi:10.1007/s00404-010-1444-y

  4. Coulam CB (1982) Premature gonadal failure. Fertil Steril 38(6):645–655

    CAS  PubMed  Google Scholar 

  5. Hsueh AJ, Billig H, Tsafriri A (1994) Ovarian follicle atresia: a hormonally controlled apoptotic process. Endocr Rev 15(6):707–724

    CAS  PubMed  Google Scholar 

  6. Hsueh AJ, Eisenhauer K, Chun SY, Hsu SY, Billig H (1996) Gonadal cell apoptosis. Recent Prog Horm Res 51:433–455

    CAS  PubMed  Google Scholar 

  7. Morita Y, Tilly JL (1999) Oocyte apoptosis: like sand through an hourglass. Dev Biol 213:1–17

    Article  CAS  PubMed  Google Scholar 

  8. Agarwal A, Gupta S, Sharma RK (2005) Role of oxidative stress in female reproduction. Reprod Biol Endocrinol 3:28

    Article  PubMed  Google Scholar 

  9. Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915–7922

    Article  CAS  PubMed  Google Scholar 

  10. Shamsi MB, Venkatesh S, Tanwar M, Talwar P, Sharma RK, Dhawan A, Kumar R, Gupta NP, Malhotra N, Singh N, Mittal S, Dada R (2009) DNA integrity and semen quality in men with low seminal antioxidant levels. Mutat Res/Fundam Mol Mech Mutagen 665:29–36

    Article  CAS  Google Scholar 

  11. Lu B, Christophe P, Tamas G, Christian G, Wilbur H, David B, Martin MM, Karl-Erik A, Paul AO, Colin EB (2008) A mutation in the inner mitochondrial membrane peptidase 2-like gene (Immp2l) affects mitochondrial function and impairs fertility in mice. Biol Reprod 78:601–610

    Article  CAS  PubMed  Google Scholar 

  12. Behrman HR, Kodaman PH, Preston SL, Gao S (2001) Oxidative stress and the ovary. J Soc Gynecol Investig 8:S40–S42

    Article  CAS  PubMed  Google Scholar 

  13. Agarwal A, Desai NR, Makker K, Varghese A, Mouradi R, Sabanegh E, Sharma R (2009) Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertil Steril 92(4):1318–1325

    Article  PubMed  Google Scholar 

  14. St John JC, Cooke ID, Barratt CL (1997) Mitochondrial mutations and male infertility. Nat Med 3:124–125

    Article  CAS  PubMed  Google Scholar 

  15. Madamanchi NR, Runge MS (2007) Mitochondrial dysfunction in atherosclerosis. Circ Res 100:460–473

    Article  CAS  PubMed  Google Scholar 

  16. Mancuso M, Coppede F, Migliore L, Siciliano G, Murri L (2006) Mitochondrial dysfunction, oxidative stress and neurodegeneration. J Alzheimer Dis 10:59–73

    CAS  Google Scholar 

  17. Sedensky MM, Morgan PG (2006) Mitochondrial respiration and reactive oxygen species in mitochondrial aging mutants. Exp Gerontol 41:237–245

    Article  CAS  PubMed  Google Scholar 

  18. Bedaiwy MA, Falcone T (2003) Peritoneal fluid environment in endometriosis: clinicopathological implications. Minerva Ginecol 55:333–345

    CAS  PubMed  Google Scholar 

  19. Kumar M, Tanwar M, Saxena R, Sharma P, Dada R (2010) Identification of novel mitochondrial mutations in Leber’s hereditary optic neuropathy. Mol Vis 16:782–792

    CAS  PubMed  Google Scholar 

  20. Sunyaev S, Ramensky V, Koch I, Lathe W 3rd, Kondrashov AS, Bork P (2001) Prediction of deleterious human alleles. Hum Mol Genet 10(6):591–597

    Article  CAS  PubMed  Google Scholar 

  21. Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30(17):3894–3900

    Article  CAS  PubMed  Google Scholar 

  22. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814

    Article  CAS  PubMed  Google Scholar 

  23. Pagani F, Raponi M, Baralle FR (2005) Synonymous mutations in CFTR exon 12 affect splicing and are not neutral in evolution. PNAS 102:6368–6372

    Article  CAS  PubMed  Google Scholar 

  24. Carlini DB, Stephan W (2003) In vivo introduction of unpreferred synonymous codons into the Drosophila Adh gene results in reduced levels of ADH protein. Genetics 163(1):239–243

    CAS  PubMed  Google Scholar 

  25. Carlini DB, Chen Y, Stephan W (2001) The relationship between third-codon position nucleotide content, codon bias, mRNA secondary structure and gene expression in the drosophilid alcohol dehydrogenase genes Adh and Adhr. Genetics 159(2):623–633

    CAS  PubMed  Google Scholar 

  26. Parsch J, Braverman JM, Stephan W (2000) Comparative sequence analysis and patterns of covariation in RNA secondary structures. Genetics 154(2):909–921

    CAS  PubMed  Google Scholar 

  27. van der Walt JM, Nicodemus KK, Martin ER, Scott WK, Nance MA, Watts RL, Hubble JP, Haines JL, Koller WC, Lyons K, Pahwa R, Stern MB, Colcher A, Hiner BC, Jankovic J, Ondo WG, Allen FH Jr, Goetz CG, Small GW, Mastaglia F, Stajich JM, McLaurin AC, Middleton LT, Scott BL, Schmechel DE, Pericak-Vance MA, Vance JM (2003) Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease. Am J Hum Genet 72(4):804–811

    Article  PubMed  Google Scholar 

  28. Sideraki V, Huang W, Palzkill T, Gilbert HF (2001) A secondary drug resistance mutation of TEM-1 beta-lactamase that suppresses misfolding and aggregation. Proc Natl Acad Sci USA 98(1):283–288

    Article  CAS  PubMed  Google Scholar 

  29. Hsieh RH, Au HK, Yeh TS, Chang SJ, Cheng YF, Tzeng CR (2004) Decreased expression of mitochondrial genes in human unfertilized oocytes and arrested embryos. Fertil Steril 81:912–918

    Article  CAS  PubMed  Google Scholar 

  30. Wong LJ (2007) Pathogenic mitochondrial DNA mutations in protein-coding genes. Muscle Nerve 36:279–293

    Article  CAS  PubMed  Google Scholar 

  31. Sugioka K, Nakano M, Totsune NH, Minakami H, Tero KS, Ikegami Y (1988) Mechanism of O2-generation in reduction and oxidation cycle of ubiquinones in a model of mitochondrial electron transport systems. Biochim Biophys Acta 936:377–385

    Article  CAS  PubMed  Google Scholar 

  32. Thouas GA, Trounson AO, Wolvetang EJ, Jones GM (2004) Mitochondrial dysfunction in mouse oocytes results in preimplantation embryo arrest in vitro. Biol Reprod 71:1936–1942

    Article  CAS  PubMed  Google Scholar 

  33. Richardson SJ, Senikas V, Nelson JF (1987) Follicular depletion during the menopausal transition: evidence for accelerated loss and ultimate exhaustion. J Clin Endocrinol Metab 65:1231–1237

    Article  CAS  PubMed  Google Scholar 

  34. Gougeon A, Busso D (2000) Morphologic and functional determinants of primordial and primary follicles in the monkey ovary. Mol Cell Endocrinol 25:33–42

    Article  Google Scholar 

  35. Wang LY, Wang DH, Zou XY, Xu CM (2009) Mitochondrial functions on oocytes and preimplantation embryos. J Zhejiang Univ Sci B 10:483–492

    Article  CAS  PubMed  Google Scholar 

  36. Greenwald GS, Terranova PF (1988) Follicular selection and its control. In: Knobil E, Neill J (eds) The physiology of reproduction. Raven Press, New York, pp 387–445

    Google Scholar 

  37. Schroedl C, McClintock DS, Budinger GR, Chandel NS (2002) Hypoxic but not anoxic stabilization of HIF-1alpha requires mitochondrial reactive oxygen species. Am J Physiol Lung Cell Mol Physiol 283:L922–L931

    CAS  PubMed  Google Scholar 

  38. Pearlstein DP, Ali MH, Mungai PT, Hynes KL, Gewertz BL, Schumacker PT (2002) Role of mitochondrial oxidant generation in endothelial cell responses to hypoxia. Arterioscler Thromb Vasc Biol 22:566–573

    Article  CAS  PubMed  Google Scholar 

  39. Basini G, Grasselli F, Bianco F, Tirelli M, Tamanini C (2004) Effect of reduced oxygen tension on reactive oxygen species production and activity of antioxidant enzymes in swine granulosa cells. Biofactors 20:61–69

    Article  CAS  PubMed  Google Scholar 

  40. Chao HT, Lee SY, Lee HM, Liao TL, Wei YH, Kao SH (2005) Repeated ovarian stimulations induce oxidative damage and mitochondrial DNA mutations in mouse ovaries. Ann N Y Acad Sci 1042:148–156

    Article  CAS  PubMed  Google Scholar 

  41. Marriage B, Clandinin MT, Glerum DM (2003) Nutritional cofactor treatment in mitochondrial disorders. J Am Diet Assoc 103(8):1029–1038

    Article  PubMed  Google Scholar 

  42. Tanaka M, Nishigaki Y, Fuku N, Ibi T, Sahashi K, Koga Y (2007) Therapeutic potential of pyruvate therapy for mitochondrial diseases. Mitochondrion 7(6):399–401

    Article  CAS  PubMed  Google Scholar 

  43. Bentov Y, Esfandiari N, Burstein E, Casper RF (2010) The use of mitochondrial nutrients to improve the outcome of infertility treatment in older patients. Fertil Steril 93(1):272–275

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rima Dada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, M., Pathak, D., Kriplani, A. et al. Nucleotide variations in mitochondrial DNA and supra-physiological ROS levels in cytogenetically normal cases of premature ovarian insufficiency. Arch Gynecol Obstet 282, 695–705 (2010). https://doi.org/10.1007/s00404-010-1623-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-010-1623-x

Keywords

Navigation