Skip to main content

Advertisement

Log in

Dose–response effect of interleukin (IL)-1β, tumour necrosis factor (TNF)-α, and interferon-γ on the in vitro production of epithelial neutrophil activating peptide-78 (ENA-78), IL-8, and IL-6 by human endometrial stromal cells

  • General Gynecology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

The production of epithelial neutrophil activating peptide-78 (NA-78) and the interleukins IL-8 and IL-6 by endometrial stromal cells is stimulated by pro-inflammatory interleukin-1 (IL-1) and tumour necrosis factor-α (TNF-α). IL-8 is suggested to play a role in the pathogenesis of endometriosis, and in these women the peritoneal fluid concentrations of ENA-78 and IL-8 are increased. TNF-α has been tested together with interferon-γ because of their cooperative stimulation of IL-6. The release of IL-8, however, is inhibited with increasing interferon levels. The aim of the study was the analysis of the production of ENA-78, IL-6 and IL-8 by cultured human endometrial stromal cells in the presence of varying concentrations of IL-1β, TNF-α, and interferon-γ.

Methods

Eutopic endometrial tissue was obtained from seven cycling, endometriosis-free women undergoing laparoscopy for reasons of infertility or pain. The release of ENA-78, IL-8 and IL-6 by the isolated and monolayer cultured stromal cell fraction in the presence of IL-1β (0.08 to 50 ng/mL), TNF-α, and interferon-γ (both 20 to 500 ng/mL) was determined.

Results

IL-1β stimulated the production of IL-8, IL-6, and ENA-78 dose dependently from 0.08 to 2.0 ng/mL (ENA-78) or to 10 ng/mL (IL-8, IL-6); at 50 ng/mL a decrease in release was observed for IL-8 and IL-6. TNF-α stimulation yielded a plateau between 20 and 100 ng/mL. Interferon-γ stimulated IL-6 and inhibited IL-8 production above 20 ng/mL. ENA-78 release was largely unaffected by interferon-γ.

Conclusions

IL-1β and TNF-α stimulate stromal cytokine production cumulatively with different dose–response curves. The presence of interferon-γ has opposite effects on IL-8 and IL-6. TNF-α and interferon-γ should be investigated separately in future in vitro studies with endometrial cells and explants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Koch AE, Volin MV, Woods JM et al (2001) Regulation of angiogenesis by the C-X-C chemokines interleukin-8 and epithelial neutrophil activating peptide 78 in the rheumatoid joint. Arthritis Rheumatol 44:31–40

    Article  CAS  Google Scholar 

  2. Walz A, Schmutz P, Mueller C, Schnyder S (1997) Regulation and function of CXC chemokine ENA-78 in monocytes and its role in disease. J Leukoc Biol 62:604–611

    PubMed  CAS  Google Scholar 

  3. Nasu K, Arima K, Kai K, Fujisawa K, Nishida M, Miyakawa I (2001) Expression of epithelial neutrophil-activating peptide 78 in cultured human endometrial stromal cells. Mol Hum Reprod 7:453–458

    Article  PubMed  CAS  Google Scholar 

  4. Persson T, Monsef N, Andersson P et al (2003) Expression of the neutrophil-activating CXC chemokine ENA-78/CXCL5 by human eosinophils. Clin Exp Allergy 33:531–537

    Article  PubMed  CAS  Google Scholar 

  5. Vercellini P, Trespidi L, De Giorgi O, Cortesi I, Parazzini F, Crosignani PG (1996) Endometriosis and pelvic pain: relation to disease stage and localization. Fertil Steril 65:299–304

    PubMed  CAS  Google Scholar 

  6. Ryan IP, Tseng JF, Schriock ED, Khorram O, Landers DV, Taylor RN (1995) Interleukin-8 concentrations are elevated in peritoneal fluid of women with endometriosis. Fertil Steril 63:929–932

    PubMed  CAS  Google Scholar 

  7. Iwabe T, Harada T, Tsudo T, Tanikawa M, Onohara Y, Terakawa N (1998) Pathogenetic significance of increased levels of interleukin-8 in the peritoneal fluid of patients with endometriosis. Fertil Steril 69:924–930

    Article  PubMed  CAS  Google Scholar 

  8. Harada T, Enatsu A, Mitsunari M, Nagano Y, Ito M, Tsudo T, Taniguchi F, Iwabe T, Tanikawa M, Terakawa N (1999) Role of cytokines in progression of endometriosis. Gynecol Obstet Invest 47(Suppl 1):34–39

    Article  PubMed  CAS  Google Scholar 

  9. Mueller MD, Mazzucchelli L, Buri C, Lebovic DI, Dreher E, Taylor RN (2003) Epithelial neutrophil-activating peptide 78 concentrations are elevated in the peritoneal fluid of women with endometriosis. Fertil Steril 79(S1):815–820

    Article  PubMed  Google Scholar 

  10. Suzumori N, Katano K, Suzumori K (2004) Peritoneal fluid concentrations of epithelial neutrophil-activating peptide-78 correlated with the severity of endometriosis. Fertil Steril 81:305–308

    Article  PubMed  CAS  Google Scholar 

  11. Punnonen J, Teisala K, Ranta H, Bennett B, Punnonen R (1996) Increased levels of interleukin-6 and interleukin-10 in the peritoneal fluid of patients with endometriosis. Am J Obstet Gynecol 174:1522–1526

    Article  PubMed  CAS  Google Scholar 

  12. Harada T, Yoshioka H, Yoshida S, Iwabe T, Onohara Y, Tanikawa M, Terakawa N (1997) Increased interleukin-6 levels in peritoneal fluid of infertile patients with active endometriosis. Am J Obstet Gynecol 176:593–597

    Article  PubMed  CAS  Google Scholar 

  13. Mahnke JL, Dawood MY, Huang JC (2000) Vascular endothelial growth factor and interleukin-6 in peritoneal fluid of women with endometriosis. Fertil Steril 73:166–170

    Article  PubMed  CAS  Google Scholar 

  14. Bersinger NA, von Roten S, Wunder DM, Raio L, Dreher E, Mueller MD (2006) PAPP-A and osteoprotegerin, together with interleukin-8 and RANTES, are elevated in the peritoneal fluid of women with endometriosis. Am J Obstet Gynecol 195:103–108

    Article  PubMed  CAS  Google Scholar 

  15. Bersinger NA, Frischknecht F, Taylor RN, Mueller MD (2008) Basal and cytokine-stimulated production of epithelial neutrophil activating peptide-78 (ENA-78) and interleukin-8 (IL-8) by cultured human endometrial epithelial and stromal cells. Fertil Steril 89:1530–1536

    Article  PubMed  CAS  Google Scholar 

  16. Iwabe T, Harada T, Tsudo T, Nagano Y, Yoshida S, Tanikawa M, Terakawa N (2000) Tumour necrosis factor-α promotes proliferation of endometriotic stromal cells by inducing interleukin-8 gene and protein expression. J Clin Endorinol Metab 85:824–829

    Article  CAS  Google Scholar 

  17. Nasu K, Matsui N, Narahara H, Tanaka Y, Miyakawa I (1998) Effects of interferon-γ on cytokine production by endometrial stromal cells. Hum Reprod 13:2598–2601

    Article  PubMed  CAS  Google Scholar 

  18. Tabibzadeh SS, Satyaswaroop PG, Rao PN (1988) Antiproliferative effect of interferon-gamma in human endometrial epithelial cells in vitro: potential local growth modulatory role in endomtrium. J Clin Endocrinol Metab 67:131–138

    Article  PubMed  CAS  Google Scholar 

  19. Murphy SP, Tayade C, Ashkar AA, Hatta K, Zhang J, Croy BA (2009) Interferon-gamma in successful pregnancies. Biol Reprod 80:848–859

    Article  PubMed  CAS  Google Scholar 

  20. Ryan IP, Schriock ED, Taylor RN (1994) Isolation, characterisation, and comparison of human endometrial and endometriosis cells in vitro. J Clin Endocrinol Metab 78:642–649

    Article  PubMed  CAS  Google Scholar 

  21. Wunder DM, Mueller MD, Birkhäuser MH, Bersinger NA (2006) Increased ENA-78 in the follicular fluid of patients with endometriosis. Acta Obstet Gynecol Scand 85:336–342

    Article  PubMed  CAS  Google Scholar 

  22. Tabibzadeh SS, Sun XZ (1992) Cytokine expression in human endometrium throughout the menstrual cycle. Hum Reprod 7:1214–1221

    PubMed  CAS  Google Scholar 

  23. Arici A, Seli E, Senturk LM, Gutierrez LS, Oral E, Taylor HS (1998) Interleukin-8 in the human endometrium. J Clin Endocrinol Metab 83:1783–1787

    Article  PubMed  CAS  Google Scholar 

  24. Vandermolen DT, Gu Y (1996) Human endometrial interleukin-6 (IL-6): in vivo messenger ribonucleic acid expression, in vitro protein production, and stimulation thereof by IL-1β. Fertil Steril 66:741–747

    PubMed  CAS  Google Scholar 

  25. Von Wolff M, Stieger S, Lumpp K, Bucking J, Strowitzki T, Thaler CJ (2002) Endometrial interleukin-6 in vitro is not regulated directly by female steroid hormones, but by pro-inflammatory cytokines and hypoxia. Mol Hum Reprod 8:1096–1102

    Article  Google Scholar 

  26. Arici A, Head JR, McDonald PC, Casey ML (1993) Regulation of interleukin-8 gene expression in human endometrial cells in culture. Mol Cell Endocrinol 94:195–204

    Article  PubMed  CAS  Google Scholar 

  27. Nasu K, Matsui N, Narahara H et al (1998) MaMi, a human endometrial stromal sarcoma cell line that constitutively produces interleukin-6, interleukin-8, and monocyte chemoattractant protein-1. Arch Pathol Lab Med 122:836–841

    PubMed  CAS  Google Scholar 

  28. Barker JN, Sarma V, Mitra RS, Dixit VM, Nickoloff BJ (1990) Marked synergism between tumour necrosis factor-alpha and interferon-gamma in regulation of keratinocyte-derived adhesion molecules and chemotactic factors. J Clin Invest 85:605–608

    Article  PubMed  CAS  Google Scholar 

  29. Chegini N, Luo X, Pan Q, Rhoton A, Archer DF (2007) Endometrial expression of epithelial neutrophil-activating peptide-78 during the menstrual cycle or in progestin-only contraceptive users with breakthrough bleeding and the influence of doxycycline therapy. Hum Reprod 22:427–433

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick A. Bersinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bersinger, N.A., Günthert, A.R., McKinnon, B. et al. Dose–response effect of interleukin (IL)-1β, tumour necrosis factor (TNF)-α, and interferon-γ on the in vitro production of epithelial neutrophil activating peptide-78 (ENA-78), IL-8, and IL-6 by human endometrial stromal cells. Arch Gynecol Obstet 283, 1291–1296 (2011). https://doi.org/10.1007/s00404-010-1520-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-010-1520-3

Keywords

Navigation