Skip to main content
Log in

Reactive oxygen species, total antioxidant concentration of seminal plasma and their effect on sperm parameters and outcome of IVF/ICSI patients

  • Original Article
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Objective

The purpose of this study was to determine and compare the concentration of reactive oxygen species (ROS) and total antioxident (TAS) in seminal plasma of IVF (in vitro fertilization) and ICSI patients, to establish their effect on sperm quality (count, vitality, HOS, morphology, maturity, DNA strand breaks) and assess the fertilization potential of spermatozoa and IVF/ICSI outcome.

Method

IVF/ICSI patients (n = 48) 26 IVF and 22 ICSI were included in this study. A spermiogram was generated from each patient one-hour post ejaculation and smears were made from each semen sample to evaluate the morphology, sperm maturity (Chromomycin CMA3) and DNA strand breaks (Terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labelling, TUNEL-assay).

Results

In both groups a negative correlation was found between ROS concentration in seminal plasma and sperm vitality (r = −0.111; P = 0.453); membrane integrity and morphology (−0.141; P = 0.340) and fertilization rate (r = −0.0290; P = 0.045). However, TAS in seminal plasma correlated positive with fertilization rate (r = 0.081; P = 0.584). In addition, an inverse correlation was found between sperm DNA strand breaks (TUNEL-test) and spermatozoa global and progressive motility, vitality, and membrane integrity. Furthermore, the mean percentage of normal condensed spermatozoa (CMA3) was significantly higher (P = 0.0001) in patients undergoing IVF compared to ICSI. Spermatozoa of male ICSI patients were more susceptible to acid denaturation (acridine orange staining) compared to spermatozoa of male IVF patients (P = 0.041). However, ROS concentration was higher in IVF patients compared to ICSI patients (94.73 ± 102.84 vs. 54.78 ± 39.83 μmol/l, whilst TAS levels (1.43 ± 0.28 vs. 1.53 ± 0.22) and fertilization rate (67. 26 vs. 67.26) were similar in both groups.

Conclusion

ROS concentration and other sperm parameters were higher in IVF compared to ICSI patients. TAS concentration was comparable between the two groups. However, the fertilization rate was smilar in IVF and ICSI patients. Therefore, ROS concentration in seminal plasma affects the quality of spermatozoa but does not affect the fertilization rate in IVF/ICSI cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agarwal A, Prabakaran SA (2005) Mechanism, measurement, and prevention of oxidative stress in male reproductive physiology. Ind J Exp Biol 43:963–974

    CAS  Google Scholar 

  2. Agarwal A, Saleh R (2002) Role of oxidants in male infertility: rationale, significance, and treatment. Urol Clin North Am 29:817–827

    Article  PubMed  Google Scholar 

  3. Aitken RJ, Krausz C (2001) Oxidative stress, DNA damage and the Y chromosome. Reproduction 122:497–506

    Article  PubMed  CAS  Google Scholar 

  4. Aitken RJ, Irvine DS, Wu FC (1991) Prospective analysis of sperm–oocyte fusion and reactive oxygen species generation as criteria for the diagnosis of infertility. Am J Obstet Gynecol 164:542–551

    PubMed  CAS  Google Scholar 

  5. Aitken RJ, Koopman P, Lewis SE (2004) Seeds of concern. Nature 432:48–52

    Article  PubMed  CAS  Google Scholar 

  6. Allmanaeni SS, Naughton CK, Sharma RK et al (2004) Increased seminal reactive oxygen species levels in patients with varicoceles correlate with varicocele grade but not with testis size. Fertil Steril 82:1684–1686

    Article  Google Scholar 

  7. Azam S, Hadi N, Khan NU, Had SM (2003) Antioxidants and prooxidant properties of caffeine, theobromine and xanthine Med Sci Monit 9(9):BB325–BB330

    Google Scholar 

  8. Aziz N, Saleh RA, Sharma RK, Lewis-Jones I, Esfanndiari N, Thomas AJ Jr et al (2004) Novel association between sperm reactive oxygen species production, sperm morphological defects, and the sperm deformity index. Fertil Steril 81:349–354

    Article  PubMed  CAS  Google Scholar 

  9. Balercia G, Armeni T, Mantero F, Principato G, Regoli F (2003) Total oxyradical scavenging capacity toward different reactive oxygen species in seminal plasma and sperm cells. Clin Chem Lab Med 41(1):13–19

    Article  PubMed  CAS  Google Scholar 

  10. Barroso G, Morshedi M, Oehninger S (2000) Analysis of DNA fragmentation, plasma membrane translocation of phosphatidylserine aqnd oxidative stress in human spermatozoa. Hum Reprod 15:1338–1344

    Article  PubMed  CAS  Google Scholar 

  11. Benchaib M, Braun V, Lornage J et al (2003) Sperm DNA fragmentation decrease the pregnancy rate in an assisted reproduction technique. Hum Reprod 18:1023–1028

    Article  PubMed  Google Scholar 

  12. Bianchi PG, Manicardi GC, Bizzaro D, Bianchi U, Sakkas D (1993) Effect of deoxyribonucleic acid protamination on Fluorochrome staining and in situ nick-translation of murine and human spermatozoa. Biol Reprod 49:1083–1088

    Article  PubMed  CAS  Google Scholar 

  13. Chen SS, Chang LS, Wei YH (2001) Oxidative damage to proteins and decrease of antioxidants capacity in patients with varicocele. Free Rad Biol Med 30:1320–1334

    Article  Google Scholar 

  14. Comhaire FH, Christophe AB., Zalata AA, Dhooge WS, Mahmoud AM, Depuydt CE (2000) The effect of combined conventional treatment, oral antioxidant and essential fatty acids on sperm biology in subfertile men. Prostaglandins Leukot Essent Fatty Acids 63:159–165

    Article  PubMed  CAS  Google Scholar 

  15. Cummins JM, Jequier AM, Kan R (1994) Molecular biology of human male infertility: links with againg, mitochondrial genetics and oxidative stress? Mol Reprod Dev 37:345–362

    Article  PubMed  CAS  Google Scholar 

  16. De Lamirande E, Leclerc P, Gagnon C (1997) Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol Hum Reprod 3:175–193

    Article  PubMed  Google Scholar 

  17. De Laminardi E, Tsai C, Harakat A, Gagnon C (1998) Involvement of reactive oxygen species in human sperm acrosome reactionn induced by A 23187, lysophosphatidylcholine, and biological fluid ultrafiltrates. J Androl 19(5):585–594

    Google Scholar 

  18. Donnelly ET, McClure N, Lewis SEM (1999) The effect of ascorbat (alpha tocopherol)- supplementation in vitro on DNA integrity and hydrogen peroxide-induced DNA damage in human spermatozoa. Mutagenesis 14:505–512

    Article  PubMed  CAS  Google Scholar 

  19. Donnelly ET, Steele EK, McClure N, Lewis SE (2001) Assessment of DNA integrity and morphology of ejaculated spermatozoa from fertile and infertile men before and after cryopreservation. Hum Reprod 16(6):1191–1199

    Article  PubMed  CAS  Google Scholar 

  20. Eliasson R, Treich L (1971) Supervital staining of human spermatozoa. Fertil Steril 22:134–137

    PubMed  CAS  Google Scholar 

  21. Eskenazi B, Kidd SA, Arks AR, Sloter E, Block G, Wyrobeck AJ (2005) Antioxidants intake is associated with sperm quality in healthy men. Hum Reprod 20(4):1006–1012

    Article  PubMed  CAS  Google Scholar 

  22. Evenson DP, Wixon R (2006) Meta analysis of sperm DNA fragmentation using the sperm chromatin structure assay. Reprod BioMed Online 12:466–472

    Article  PubMed  CAS  Google Scholar 

  23. Evenson DP, Jost LK (2000) Sperm chromatin structure assay is useful for fertility assessment. Method Cell Sci 22(2–3):169–189

    Article  CAS  Google Scholar 

  24. Evenson DP, Jost LK., Baer RK, Turner TW, Schrader SM (1991) Individuality of DNA denaturation patterns in human sperm as measured by the sperm chromatin structure assay. Reprod Toxicol 5(2):115–125

    Article  PubMed  CAS  Google Scholar 

  25. Garrido N, Messeguer M, Simon C, Pellicer A, Remoti J (2004) Pro-oxidative and anti-oxidative imbalance in human semen and its relation with male fertility. Asian J Androl 6(1):59–65

    PubMed  CAS  Google Scholar 

  26. Gil-Guzman E, Ollero M, Lopez MC, Sharma RK, Alvarez JG, Thomas AJ, Agarwal A (2001) Differential production of reactive oxygen species by subsets of human spermatozoa at the different stages of maturation. Hum Reprod 16:1922–1930

    Article  PubMed  CAS  Google Scholar 

  27. Giwercman A, Richthoff J, Hjollund H, Bonde JP, Jepson K, Frohm B, Spano M (2003) Correlation between sperm motility and sperm chromation structure assay parameters. Fertil Steril (9):1404–1412

  28. Gomez E, Irvine DS, Aitken RJ (1998) Evaluation of a spectrophotometeric assay for the measurement of malondialdehyde and 4-hydroxyalkenals in human spermatozoa: relationships with semen quality and sperm function. Int J Androl 21:81–94

    Article  PubMed  CAS  Google Scholar 

  29. Hammadeh ME, Stieber M, Haidl G, Schmidt W (1998) Association between sperm chromatin condensation, morphology based on strict criteria, and fertilization, cleavage and pregnancy rates in an IVF program. Andrologia 30:29–35

    Article  PubMed  CAS  Google Scholar 

  30. Hammadeh ME, Ertan K, Baltes S, Breamert B, George P, Rosenbaum P, Schmidt W (2002) Association between interleukin concentration in follicular fluid and intracytoplasmic sperm injection outcome. Am J Reprod Immunol 45:161–167

    Article  Google Scholar 

  31. Hammadeh ME, Radwan M, Al-Hasani S, Micu R, Rosenbaum P, Lorenz M, Schmidt W (2006) Comparison of reactive oxygen species concentration in seminal plasma and semen parameters in partners of pregnant and non-pregnant patients after IVF/ICSI. Reprod BioMed Online 13(5):696–706

    PubMed  CAS  Google Scholar 

  32. Henkel R, Schill WB (1998) Sperm separation in patients with urogenital infectins. Andrologia 30(suppl 1):91–97

    PubMed  Google Scholar 

  33. Henkel R, Schill WB (2003) Sperm preparation for ART. Reprod Biol & Endocrinol 1:108–123

    Article  Google Scholar 

  34. Host E, lindenberg S, Smith-Jensen S (2000) DNA strand breaks in human spermatozoa: correlation with fertilization in vitro in oligozoospermic men and in men with unexpected infertility. Acta Obstet Gynecol Scan 79:189–193

    Article  CAS  Google Scholar 

  35. Irvine DS, Twigg JP, Gordon EL (2000) DNA integrity in human spermatozoa: relationship with semen quality. J Androl 21:33–44

    PubMed  CAS  Google Scholar 

  36. Iwasaki A, Gagnon C (1992) Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil Steril 57:409–417

    PubMed  CAS  Google Scholar 

  37. Jeyendran R, Van der Ven H, Perez-Pelaez M et al (1984) Development of an assay to assess the functional integrity of human sperm membranes and its relationship to other semen characteristics. J Reprod Fertil 70:219–228

    Article  PubMed  CAS  Google Scholar 

  38. Jones R, Mann T, Sherins RJ (1979) Peroxidase breakdown of phospholipids in human spermatozoa: spermicidal effect effects of fatty acid peroxidase and protective action of seminal plasma. Fertil Steril 31:531–537

    PubMed  CAS  Google Scholar 

  39. Kessopoulou E, Tomlinson MJ, Barratt CL, Bolton AE, Cooke ID (1992) Origen of reactive oxygen species in human semen–spermatozoa or leukocytes. J Reprod Fertil 94:463–470

    Article  PubMed  CAS  Google Scholar 

  40. Kim JG, Parthasarathy S (1998) Oxidation and the spermatozoa. Semin Reprod Endocrinol 16:235–239

    PubMed  CAS  Google Scholar 

  41. Kobayashi H, Gil-Guzman E, Mahran AM, Rakesh S, Nelson DR, Thomas AJ Jr, Agarwal A (2001) Quality control of reactive oxygen species measurement by luminal-dependent chemiluminscence assay. J Androl 22(4):568–574

    PubMed  CAS  Google Scholar 

  42. Kodama H, Yamaguchi R, Fukuda J, Kasai H, Tanaka T (1997) Increased oxidative deoxyribonucleic acid daage in the spermatozoa of infertile male patients. Fertil Steril 68(3):519–524

    Article  PubMed  CAS  Google Scholar 

  43. Krausz C, Mills C, Rogers S, Tan SL, Aitken RJ (1994) Stimulation of oxidant generation by human sperm suspensions using phorbol esters and formyl peptides: relationship with motility and fertilization in vitro. Fertil Steril 62:599–605

    PubMed  CAS  Google Scholar 

  44. Krüger TF, Acosta AA, Simmons KF., Swanson RJ, Matta JF, Veek LL et al (1987) New method of evaluating sperm morphology with predictive value for human in vitro fertilization. Urology 30:248–251

    Article  PubMed  Google Scholar 

  45. Larson KL, DeJonge C, Barnes A, Jost L, Evenson DP (2000) Relationship between assisted reproduction techniques (ART) outcome and status of chromatin integrity as measured by the sperm chromatin structure assay (SCSA). Hum Reprod 15:1717–1722

    Article  PubMed  CAS  Google Scholar 

  46. Larson-Cook KL, Brannian JD, Hansen KA, Kasperson KM, Aamold ET, Evenson DP (2003) Relationship between the outcome of assisted reproductive techniques and sperm DNA fragmentation as measured by the sperm chromatin structure assay. Fertil Steril 80:895–902

    Article  PubMed  Google Scholar 

  47. Lewis SEM, Boyle PM, McKinney KA et al (1995) Total antioxidant capacity of seminal plasma is different in fertile and infertile men. Fertil Steril 64:868–870

    PubMed  CAS  Google Scholar 

  48. Lewis SEM, Sterling ES, Young IS, Thompson W (1997) Comparison of individual antioxidants of sperm and seminal plasma in fertile and infertile men. Fertil Steril 67:142–147

    Article  PubMed  CAS  Google Scholar 

  49. Lopes S, Jurisicova A, Sun JG, Casper RF (1998) Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum Reprod 13:896–900

    Article  PubMed  CAS  Google Scholar 

  50. Mazzilli F, Rossi T, Marchesini M et al (1994) Superoxid anion in human semen related to seminal parameters and clinical aspects. Fertil Steril 62:862–868

    PubMed  CAS  Google Scholar 

  51. McVicar, McClure N, Williamson K, Dalzell LH, Lewis SE (2004) Incidence of FAS positively and deoxyribonucleic acid double-stranded breaks in human ejaculated sperm. Fertil Steril Suppl 1:767–774

    Article  CAS  Google Scholar 

  52. Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A (1993) A novel method for measuring antioxidants status in premature neonate. Clin Sci 84:407–412

    PubMed  CAS  Google Scholar 

  53. Moller P, Wallin H, Knudsen LE (1996) Oxidative stress associated with exercise, psychological stress and life-style factors. Chem Biol Interact. 27:102 (1) 17–36

    Google Scholar 

  54. Morris ID, Iloti S, Dxon L, Brison DR (2002) The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (Comet assay) its relationship fetilizationembryo development. Hum Reprod 17(4):990–998

    Article  PubMed  CAS  Google Scholar 

  55. Moustafa MH, Sharma PK, Thomton J, Mascha E, Abdel-Hafez MA, Thomas AJ Jr et al (2004) Relationship between ROS production, apoptosis and DNA denaturation in spermatozoa from patients examined for infertility. Hum Reprod 19:129–138

    Article  PubMed  CAS  Google Scholar 

  56. Nadella M, Bianchet MA, Gabelli SB, Barrila J, Amzel LM (2005) Structure and activity of the axon guidance protein MICAL. Proceeding National Academy of Science USA 15:102 (46):16830–16835

    Google Scholar 

  57. Pasqualotto FF, Sharma RK, Nelson DR, Thomas AJ, Agarwal A (2000) Relationship between oxidative stress, semen characteristics, and clinical diagnosis in men undergoing infertility investigation. Fertil Steril 73:459–464

    Article  PubMed  CAS  Google Scholar 

  58. Rice-Evance C, Miller NJ (1994) Total antioxidant status in plasma and body fluids. Methods Euzymol 234:279–293

    Article  Google Scholar 

  59. Said TM, Agarwal A, Sharma RK, Mascha F, Sikka SC, Thomas AJJ (2004) Human sperm superoxid anion generation and correlation with semen quality in patients with mal infertility. Fertil Steril 82:871–877

    Article  PubMed  CAS  Google Scholar 

  60. Said TM, Aziz N, Sharma R, Lewis-Jones I, Thomas AJ, Agarwal A (2005) Novel association between sperm deformity index and oxidative stress-induced DNA damage in infertile male patients. Asian J Androl 7:121–126

    Article  PubMed  CAS  Google Scholar 

  61. Saleh RA, Agarwal A, Nelson DR, Nada EA, EL-Tonsy MH, Alvarez JG et al (2002) Increased sperm nuclear DNA damage in normozoospermic infertile men: a prospective study. Fertil Steril 78:313–318

    Article  PubMed  Google Scholar 

  62. Saleh RA, Agarwal A, Sharma RK et al (2003) Evaluation of nuclear DNA damage in spermatozoa from infertile men with varicocele. Fertil Steril 80:1431–1436

    Article  PubMed  Google Scholar 

  63. Sharma RK, Agarwal A (1996) Role of reactive oxygen species in male infertility. J Urol 48:835–850

    Article  CAS  Google Scholar 

  64. Sharma RK, Pasqualotto FF, Nelson DR, Thomas AJ Jr, Agarwal A (1999) The reactive oxygen species-total antioxidant capacity score in a new measure of oxidative stress to predict male infertility. Hum Reprod 14:2801–2807

    Article  PubMed  CAS  Google Scholar 

  65. Sikka SC (2001) Relative impact of oxidative stress on male reproductive function. Curr Med Chem (Rev) 8(7):851–862

    CAS  Google Scholar 

  66. Silber SJ, Van Steirteghem AC, Liu J, Nagy Z, Tournaye H, Devroey P (1995) High fertilization and pregnancy rate after intracytoplasmic sperm injection with spermatozoa obtained from testicle biopsy. Hum Reprod 10(1):148–152

    Article  PubMed  CAS  Google Scholar 

  67. Sills ES, Fryman JT, Perloe M, Michels KB, Tucker MJ (2004) Chromatin fluorescence characteristics and standard semen analysis parameters: correlations observed in andrology testing among 136 males referred for infertility evaluation. J Obstet Gynecol 24(1):74–77

    Google Scholar 

  68. Silver EW, Eskenazi B, Evenson D, Block G, Young S, Wyrobek AJ (2005) Effect of antioxidants intake on sperm chromatin stability in healthy non-smoking men. J Androl 26(4):550–556

    Article  PubMed  CAS  Google Scholar 

  69. Spano M, Bonde JP, Hjollund HI, Kolstad HA, Cordelli E, Leter G (2000) The Danish first pregnancy planner study team. Sperm chromatin damage impairs human fertility. Fertil Steril 73:43–50

    Article  PubMed  CAS  Google Scholar 

  70. Sukcharoen N, Keith J, Irvine DS, Aitken RJ (1996) Prediction of the in-vitro fertilization (IVF) potential of human spermatozoa using sperm function test: the effect of the delay between testing and IVF. Hum Reprod 11:1030–1034

    PubMed  CAS  Google Scholar 

  71. Sukcharoen N, Keith J, Irvine DS, Aitken RJ (1995) Predicting the fertilization potential of human sperm suspension in vitro; importance of sperm morphology and leukocyte contamination. Fertil Steril 63:1293–1300

    PubMed  CAS  Google Scholar 

  72. Suleiman SA, Ali ME, Zaki ZM et al (1996) Lipid peroxidation and human sperm motility: protective role of vitamin E. J Andol 17:530–537

    CAS  Google Scholar 

  73. Sun J G, Jurisicova A, Camper RF (1997) Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol Reprod 56:602–607

    Article  PubMed  CAS  Google Scholar 

  74. Tejada RI, Mitchel JC, Mark JJ, Friedman S (1984) A test for the practical evaluation of male fertility by Acridine orange fluorescence. Fertil Steril 42:87–91

    PubMed  CAS  Google Scholar 

  75. Tominga H, Kodama S, Matsuda N et al (2004) Involvement of reactive oxygen speciec (ROS) in the induction of genetic instability by radiation. J Rad Res (Tokyo) 45:181–188

    Article  Google Scholar 

  76. Tomlinson MJU, Moffat O, Manicardi GC et al (2001) Interrelationships between seminal parameters and sperm nuclear DNA damage before and after density gradient centrifugation: implications for assisted conception. Hum Reprod 16:2160–2165

    Article  PubMed  CAS  Google Scholar 

  77. Twigg JP, Fulton N, Gomez E, Irvine DS, Aitken RJ (1998) Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: lipid peroxidation, DNA fragmentation and effectiveness of antioxidants. Hum Reprod 13(6):1429–1436

    Article  PubMed  CAS  Google Scholar 

  78. Virro MR, Larson-Cook KL, Evenson D (2004) Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril 81:1289–1295

    Article  PubMed  Google Scholar 

  79. World Health Organization (1999) WHO laboratory manual for the examination of human sperm and semen–cervical mucus interaction, 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

  80. Wyrobek AJ, Evenson D, Arnheim N, Jabs EW, Young S, Pearson FS, Glaser RL, Thiemann I, Eshkenazi B (2006) Advacing male age increase the frequencies of sperm with DNA fragmentation and certain gene mutations, but not aneuploidy or diploidyes. Proc Natl Acad Sci USA 103(25):9601–9606

    Article  PubMed  CAS  Google Scholar 

  81. Zalata AA, Ahmed AH, Alamaneni SS, Comhaire FH, Agarwal A (2004) Relationship between acrosin activity of human spermatozoa and oxidative stress. Asia J Androl 6(4):313–318

    CAS  Google Scholar 

  82. Zorn B, Vidamer G, Meden-Vrtovec H (2003) Seminal reactive oxygen species as predictors of fertilization, embryo quality and pregnancy rates after conventional in vitro fertilization and intracytoplasmic sperm injection. Int J Androl 26:279–285

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors like to thank Dr. Maria Vourliotis for her careful revision of this manuscript regardiong the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Hammadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammadeh, M.E., Al Hasani, S., Rosenbaum, P. et al. Reactive oxygen species, total antioxidant concentration of seminal plasma and their effect on sperm parameters and outcome of IVF/ICSI patients. Arch Gynecol Obstet 277, 515–526 (2008). https://doi.org/10.1007/s00404-007-0507-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-007-0507-1

Keywords

Navigation