Abstract
Background
Abnormal biological behaviour of keratinocytes (KCs) is a critical pathophysiological manifestation of psoriasis. Ferroptosis is programmed cell death induced by the accumulation of lipid reactive oxygen species (ROS) in the presence of increased intracellular iron ions or inhibition of GPX4.
Objectives
The purpose of this study was to investigate the effects of ferroptosis on the biological behaviour of Keratinocytes (KCs) in psoriasis vulgaris and its possible regulatory mechanisms in clinical samples, cells, and mouse models.
Methods
We first examined the differences in the expression of GPX4 and 4-HNE between psoriasis and normal human lesions. And detected KRT6, FLG, and inflammatory cytokines after inducing ferroptosis in animal and cell models by RT-qPCR, Western blot, immunohistochemistry, and flow cytometry.
Results
We found that GPX4 was decreased and that the oxidation product 4-hydroxy-2-nonenal (HNE) was increased in the skin lesions of patients with psoriasis vulgaris. The expression level of GPX4 correlates with the severity of skin lesions. Moreover, inducing ferroptosis promoted the expression of FLG and reduced the expression of KRT6 and inflammatory cytokines in vitro, and alleviated the phenotype of skin lesions in vivo.
Limitations
Our study has limitations, notably small sample size. Larger clinical trials are necessary to investigate the association between ferroptosis and disease progression further. More research is necessary to explore how the ferroptosis inducer RSL3 regulates the abnormal biological behaviour of KCs at both cellular and animal levels and establish ferroptosis inhibitors as controls.
Conclusions
This study confirms the existence of ferroptosis in psoriatic lesions, which may be inversely correlated with disease severity. The ferroptosis inducer RSL3 ameliorated psoriatic symptoms by improving the abnormal biological behaviour of KCs.
Similar content being viewed by others
Data availability
No datasets were generated or analysed during the current study.
Abbreviations
- KCs:
-
keratinocytes
- GPX4:
-
glutathione peroxidase 4
- IMQ:
-
imiquimod
- Th:
-
T helper cells
- TNF:
-
tumour necrosis factor
- IL:
-
interleukin
- CXCL:
-
C-X-C motif chemokine ligand
- CCL:
-
C-C motif chemokine ligand
- GSH:
-
glutathione
- Xc― :
-
cystine/glutamate transporter
- ROS:
-
reactive oxygen species
- 4HNE:
-
4-Hydroxynonenal
- KRT:
-
keratin
- FLG:
-
filaggrin
- PI:
-
propidium iodide
- HE:
-
hematoxylin and eosin stain
- PASI:
-
psoriasis area and severity index
- Ctrl:
-
control
References
Ding X, Wang T, Shen Y, Wang X, Zhou C, Tian S et al (2012) Prevalence of psoriasis in China: a population-based study in six cities. Eur J Dermatol 22(5):663–667. https://doi.org/10.1684/ejd.2012.1802
Leigh IM, Pulford KA, Ramaekers FC, Lane EB (1985) Psoriasis: maintenance of an intact monolayer basal cell differentiation compartment in spite of hyperproliferation. Br J Dermatol 113(1):53–64. https://doi.org/10.1111/j.1365-2133.1985.tb02044.x
Wrone-Smith T, Mitra RS, Thompson CB, Jasty R, Castle VP, Nickoloff BJ (1997) Keratinocytes derived from psoriatic plaques are resistant to apoptosis compared with normal skin. Am J Pathol 151(5):1321–1329
Albanesi C, De Pità O, Girolomoni G (2007) Resident skin cells in psoriasis: a special look at the pathogenetic functions of keratinocytes. Clin Dermatol 25(6):581–588. https://doi.org/10.1016/j.clindermatol.2007.08.013
Ni X, Lai Y, Keratinocyte (2020) A trigger or an executor of psoriasis? J Leukoc Biol ;108(2):485-491.10.1002/jlb.5mr0120-439r
Kim J, Krueger JG (2015) The immunopathogenesis of psoriasis. Dermatol Clin 33(1):13–23. https://doi.org/10.1016/j.det.2014.09.002
Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B et al (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449(7162):564–569. https://doi.org/10.1038/nature06116
Boehncke WH, Schön MP, Psoriasis (2015) Lancet ;386(9997):983 – 94.10.1016/s0140-6736(14)61909-7
Jiang M, Fang H, Shao S, Dang E, Zhang J, Qiao P et al (2019) Keratinocyte exosomes activate neutrophils and enhance skin inflammation in psoriasis. Faseb j ;33(12):13241-13253.https://doi.org/10.1096/fj.201900642R
Chiricozzi A, Guttman-Yassky E, Suárez-Fariñas M, Nograles KE, Tian S, Cardinale I et al (2011) Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J Invest Dermatol ;131(3):677 – 87.https://doi.org/10.1038/jid.2010.340
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell ;149(5):1060 – 72.10.1016/j.cell.2012.03.042
Mou Y, Wang J, Wu J, He D, Zhang C, Duan C et al (2019) Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol ;12(1):34.https://doi.org/10.1186/s13045-019-0720-y
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N et al (2020) Ferroptosis: past, present and future. Cell Death Dis ;11(2):88.10.1038/s41419-020-2298-2
Stockwell BR (2022) Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185(14):2401–2421. https://doi.org/10.1016/j.cell.2022.06.003
Shintoku R, Takigawa Y, Yamada K, Kubota C, Yoshimoto Y, Takeuchi T et al (2017) Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3. Cancer Sci ;108(11):2187-2194.10.1111/cas.13380
Sui X, Zhang R, Liu S, Duan T, Zhai L, Zhang M et al (2018) RSL3 Drives Ferroptosis Through GPX4 Inactivation and ROS Production in Colorectal Cancer. Front Pharmacol ;9:1371.https://doi.org/10.3389/fphar.2018.01371
Asperti M, Bellini S, Grillo E, Gryzik M, Cantamessa L, Ronca R et al (2021) H-ferritin suppression and pronounced mitochondrial respiration make Hepatocellular Carcinoma cells sensitive to RSL3-induced ferroptosis. Free Radic Biol Med 169:294–303. https://doi.org/10.1016/j.freeradbiomed.2021.04.024
Li S, He Y, Chen K, Sun J, Zhang L, He Y et al (2021) RSL3 Drives Ferroptosis through NF-κB Pathway Activation and GPX4 Depletion in Glioblastoma. Oxid Med Cell Longev ;2021:2915019.https://doi.org/10.1155/2021/2915019
Zhao T, Yang Q, Xi Y, Xie Z, Shen J, Li Z et al (2022) Ferroptosis in rheumatoid arthritis: a potential therapeutic strategy. Front Immunol 13:779585. https://doi.org/10.3389/fimmu.2022.779585
Li P, Jiang M, Li K, Li H, Zhou Y, Xiao X et al (2021) Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity. Nat Immunol 22(9):1107–1117. https://doi.org/10.1038/s41590-021-00993-3
Nagasaki T, Schuyler AJ, Zhao J, Samovich SN, Yamada K, Deng Y et al (2022) 15LO1 dictates glutathione redox changes in asthmatic airway epithelium to worsen type 2 inflammation. J Clin Invest 132(1):101172jci151685
Yamane D, Hayashi Y, Matsumoto M, Nakanishi H, Imagawa H, Kohara M et al (2022) FADS2-dependent fatty acid desaturation dictates cellular sensitivity to ferroptosis and permissiveness for hepatitis C virus replication. Cell Chem Biol ;29(5):799–810.e4.https://doi.org/10.1016/j.chembiol.2021.07.022
Arbiser JL, Bonner MY, Ward N, Elsey J, Rao S (2018) Selenium unmasks protective iron armor: a possible defense against cutaneous inflammation and cancer. Biochim Biophys Acta Gen Subj 1862(11):2518–2527. https://doi.org/10.1016/j.bbagen.2018.05.018
Shou Y, Yang L, Yang Y, Xu J (2021) Inhibition of keratinocyte ferroptosis suppresses psoriatic inflammation. Cell Death Dis 12(11):1009. https://doi.org/10.1038/s41419-021-04284-5
Guilloteau K, Paris I, Pedretti N, Boniface K, Juchaux F, Huguier V et al (2010) Skin inflammation Induced by the synergistic action of IL-17A, IL-22, Oncostatin M, IL-1{alpha}, and TNF-{alpha} recapitulates some features of Psoriasis. J Immunol 184(9):5263–5270. https://doi.org/10.4049/jimmunol.0902464
van der Fits L, Mourits S, Voerman JS, Kant M, Boon L, Laman JD et al (2009) Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol ;182(9):5836 – 45.10.4049/jimmunol.0802999
Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J et al (2020) The emerging role of ferroptosis in inflammation. Biomed Pharmacother 127:110108. https://doi.org/10.1016/j.biopha.2020.110108
Zeng J, Zhang Y, Zhang H, Zhang Y, Gao L, Tong X et al (2021) RPL22 Overexpression Promotes Psoriasis-Like Lesion by Inducing Keratinocytes Abnormal Biological Behavior. Front Immunol ;12:699900.10.3389/fimmu.2021.699900
Yin R, Gao L, Tan W, Guo W, Zhao T, Nelson JS et al (2017) Activation of PKCα and PI3K Kinases in Hypertrophic and Nodular Port Wine Stain Lesions. Am J Dermatopathol ;39(10):747-752.10.1097/dad.0000000000000785
Thewes M, Stadler R, Korge B, Mischke D (1991) Normal psoriatic epidermis expression of hyperproliferation-associated keratins. Arch Dermatol Res ;283(7):465 – 71.10.1007/bf00371784
Costanzo A, Fausti F, Spallone G, Moretti F, Narcisi A, Botti E (2015) Programmed cell death in the skin. Int J Dev Biol ;59(1–3):73 – 8.10.1387/ijdb.150050ac
Lei G, Zhuang L, Gan B (2022) Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer ;22(7):381-396.10.1038/s41568-022-00459-0
Griffiths CEM, Armstrong AW, Gudjonsson JE, Barker J (2021) Psoriasis. Lancet ;397(10281):1301-1315.10.1016/s0140-6736(20)32549-6
Hong SH, Lee DH, Lee YS, Jo MJ, Jeong YA, Kwon WT et al (2017) Molecular crosstalk between ferroptosis and apoptosis: emerging role of ER stress-induced p53-independent PUMA expression. Oncotarget 8(70):115164–115178. https://doi.org/10.18632/oncotarget.23046
Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D et al (2019) Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev 2019:5080843. https://doi.org/10.1155/2019/5080843
Tang D, Chen X, Kang R, Kroemer G (2021) Ferroptosis: molecular mechanisms and health implications. Cell Res 31(2):107–125. https://doi.org/10.1038/s41422-020-00441-1
Toulza E, Mattiuzzo NR, Galliano MF, Jonca N, Dossat C, Jacob D et al (2007) Large-scale identification of human genes implicated in epidermal barrier function. Genome Biol 8(6):R107. https://doi.org/10.1186/gb-2007-8-6-r107
Wang D, Xie N, Gao W, Kang R, Tang D (2018) The ferroptosis inducer erastin promotes proliferation and differentiation in human peripheral blood mononuclear cells. Biochem Biophys Res Commun 503(3):1689–1695. https://doi.org/10.1016/j.bbrc.2018.07.100
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ ;25(3):486-541.10.1038/s41418-017-0012-4
Green DR, The Coming Decade of Cell Death Research (2019) : Five Riddles. Cell ;177(5):1094-1107.10.1016/j.cell.2019.04.024
Cui Y, Zhang Z, Zhou X, Zhao Z, Zhao R, Xu X et al (2021) Microglia and macrophage exhibit attenuated inflammatory response and ferroptosis resistance after RSL3 stimulation via increasing Nrf2 expression. J Neuroinflammation ;18(1):249.10.1186/s12974-021-02231-x
Nowowiejska J, Baran A, Hermanowicz JM, Pryczynicz A, Sieklucka B, Pawlak D et al (2023) Gasdermin D (GSDMD) Is Upregulated in Psoriatic Skin-A New Potential Link in the Pathogenesis of Psoriasis. Int J Mol Sci ;24(17)10.3390/ijms241713047
Nowowiejska J, Baran A, Pryczynicz A, Hermanowicz JM, Sieklucka B, Pawlak D et al (2023) Gasdermin E (GSDME)-A New Potential Marker of Psoriasis and Its Metabolic Complications: The First Combined Study on Human Serum, Urine and Tissue. Cells ;12(17)10.3390/cells12172149
Nowowiejska J, Baran A, Pryczynicz A, Hermanowicz JM, Sieklucka B, Pawlak D et al (2024) Gasdermin B (GSDMB) in psoriatic patients-a preliminary comprehensive study on human serum, urine and skin. Front Mol Biosci ;11:1382069.10.3389/fmolb.2024.1382069
Zhang D, Li Y, Du C, Sang L, Liu L, Li Y et al (2022) Evidence of pyroptosis and ferroptosis extensively involved in autoimmune diseases at the single-cell transcriptome level. J Transl Med ;20(1):363.10.1186/s12967-022-03566-6
Lv J, Hou B, Song J, Xu Y, Xie S (2022) The Relationship Between Ferroptosis and Diseases. J Multidiscip Healthc ;15:2261-2275.10.2147/jmdh.S382643
Chen X, Kang R, Kroemer G, Tang D (2021) Ferroptosis in infection, inflammation, and immunity. J Exp Med ;218(6)10.1084/jem.20210518
Author information
Authors and Affiliations
Contributions
Wenchuan Li: Conceptualization and Supervision. Jinrong Zeng, Lu zhou, and Zhibing Fu: Writing- Original draft preparation. Qian Hu, Ningling Wu: Investigation, Methodology and Formal analysis. Ningling Wu: Visualization. Xiaoliang Tong: Validation. Lina Tan, Siyu Yan, Lihua Gao, and Dan Wang: Data Curation. Wenchuan Li: Writing - Review & Editing. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wu, N., Hu, Q., Fu, Z. et al. Article file. Arch Dermatol Res 316, 604 (2024). https://doi.org/10.1007/s00403-024-03345-x
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00403-024-03345-x