Skip to main content
Log in

Article file

Pilot study of the role of ferroptosis in abnormal biological behaviour of keratinocytes in psoriasis vulgaris

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Background

Abnormal biological behaviour of keratinocytes (KCs) is a critical pathophysiological manifestation of psoriasis. Ferroptosis is programmed cell death induced by the accumulation of lipid reactive oxygen species (ROS) in the presence of increased intracellular iron ions or inhibition of GPX4.

Objectives

The purpose of this study was to investigate the effects of ferroptosis on the biological behaviour of Keratinocytes (KCs) in psoriasis vulgaris and its possible regulatory mechanisms in clinical samples, cells, and mouse models.

Methods

We first examined the differences in the expression of GPX4 and 4-HNE between psoriasis and normal human lesions. And detected KRT6, FLG, and inflammatory cytokines after inducing ferroptosis in animal and cell models by RT-qPCR, Western blot, immunohistochemistry, and flow cytometry.

Results

We found that GPX4 was decreased and that the oxidation product 4-hydroxy-2-nonenal (HNE) was increased in the skin lesions of patients with psoriasis vulgaris. The expression level of GPX4 correlates with the severity of skin lesions. Moreover, inducing ferroptosis promoted the expression of FLG and reduced the expression of KRT6 and inflammatory cytokines in vitro, and alleviated the phenotype of skin lesions in vivo.

Limitations

Our study has limitations, notably small sample size. Larger clinical trials are necessary to investigate the association between ferroptosis and disease progression further. More research is necessary to explore how the ferroptosis inducer RSL3 regulates the abnormal biological behaviour of KCs at both cellular and animal levels and establish ferroptosis inhibitors as controls.

Conclusions

This study confirms the existence of ferroptosis in psoriatic lesions, which may be inversely correlated with disease severity. The ferroptosis inducer RSL3 ameliorated psoriatic symptoms by improving the abnormal biological behaviour of KCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

Abbreviations

KCs:

keratinocytes

GPX4:

glutathione peroxidase 4

IMQ:

imiquimod

Th:

T helper cells

TNF:

tumour necrosis factor

IL:

interleukin

CXCL:

C-X-C motif chemokine ligand

CCL:

C-C motif chemokine ligand

GSH:

glutathione

Xc :

cystine/glutamate transporter

ROS:

reactive oxygen species

4HNE:

4-Hydroxynonenal

KRT:

keratin

FLG:

filaggrin

PI:

propidium iodide

HE:

hematoxylin and eosin stain

PASI:

psoriasis area and severity index

Ctrl:

control

References

  1. Ding X, Wang T, Shen Y, Wang X, Zhou C, Tian S et al (2012) Prevalence of psoriasis in China: a population-based study in six cities. Eur J Dermatol 22(5):663–667. https://doi.org/10.1684/ejd.2012.1802

    Article  PubMed  Google Scholar 

  2. Leigh IM, Pulford KA, Ramaekers FC, Lane EB (1985) Psoriasis: maintenance of an intact monolayer basal cell differentiation compartment in spite of hyperproliferation. Br J Dermatol 113(1):53–64. https://doi.org/10.1111/j.1365-2133.1985.tb02044.x

    Article  CAS  PubMed  Google Scholar 

  3. Wrone-Smith T, Mitra RS, Thompson CB, Jasty R, Castle VP, Nickoloff BJ (1997) Keratinocytes derived from psoriatic plaques are resistant to apoptosis compared with normal skin. Am J Pathol 151(5):1321–1329

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Albanesi C, De Pità O, Girolomoni G (2007) Resident skin cells in psoriasis: a special look at the pathogenetic functions of keratinocytes. Clin Dermatol 25(6):581–588. https://doi.org/10.1016/j.clindermatol.2007.08.013

    Article  PubMed  Google Scholar 

  5. Ni X, Lai Y, Keratinocyte (2020) A trigger or an executor of psoriasis? J Leukoc Biol ;108(2):485-491.10.1002/jlb.5mr0120-439r

  6. Kim J, Krueger JG (2015) The immunopathogenesis of psoriasis. Dermatol Clin 33(1):13–23. https://doi.org/10.1016/j.det.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  7. Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B et al (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449(7162):564–569. https://doi.org/10.1038/nature06116

    Article  CAS  PubMed  Google Scholar 

  8. Boehncke WH, Schön MP, Psoriasis (2015) Lancet ;386(9997):983 – 94.10.1016/s0140-6736(14)61909-7

  9. Jiang M, Fang H, Shao S, Dang E, Zhang J, Qiao P et al (2019) Keratinocyte exosomes activate neutrophils and enhance skin inflammation in psoriasis. Faseb j ;33(12):13241-13253.https://doi.org/10.1096/fj.201900642R

  10. Chiricozzi A, Guttman-Yassky E, Suárez-Fariñas M, Nograles KE, Tian S, Cardinale I et al (2011) Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J Invest Dermatol ;131(3):677 – 87.https://doi.org/10.1038/jid.2010.340

  11. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell ;149(5):1060 – 72.10.1016/j.cell.2012.03.042

  12. Mou Y, Wang J, Wu J, He D, Zhang C, Duan C et al (2019) Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol ;12(1):34.https://doi.org/10.1186/s13045-019-0720-y

  13. Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N et al (2020) Ferroptosis: past, present and future. Cell Death Dis ;11(2):88.10.1038/s41419-020-2298-2

  14. Stockwell BR (2022) Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185(14):2401–2421. https://doi.org/10.1016/j.cell.2022.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shintoku R, Takigawa Y, Yamada K, Kubota C, Yoshimoto Y, Takeuchi T et al (2017) Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3. Cancer Sci ;108(11):2187-2194.10.1111/cas.13380

  16. Sui X, Zhang R, Liu S, Duan T, Zhai L, Zhang M et al (2018) RSL3 Drives Ferroptosis Through GPX4 Inactivation and ROS Production in Colorectal Cancer. Front Pharmacol ;9:1371.https://doi.org/10.3389/fphar.2018.01371

  17. Asperti M, Bellini S, Grillo E, Gryzik M, Cantamessa L, Ronca R et al (2021) H-ferritin suppression and pronounced mitochondrial respiration make Hepatocellular Carcinoma cells sensitive to RSL3-induced ferroptosis. Free Radic Biol Med 169:294–303. https://doi.org/10.1016/j.freeradbiomed.2021.04.024

    Article  CAS  PubMed  Google Scholar 

  18. Li S, He Y, Chen K, Sun J, Zhang L, He Y et al (2021) RSL3 Drives Ferroptosis through NF-κB Pathway Activation and GPX4 Depletion in Glioblastoma. Oxid Med Cell Longev ;2021:2915019.https://doi.org/10.1155/2021/2915019

  19. Zhao T, Yang Q, Xi Y, Xie Z, Shen J, Li Z et al (2022) Ferroptosis in rheumatoid arthritis: a potential therapeutic strategy. Front Immunol 13:779585. https://doi.org/10.3389/fimmu.2022.779585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li P, Jiang M, Li K, Li H, Zhou Y, Xiao X et al (2021) Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity. Nat Immunol 22(9):1107–1117. https://doi.org/10.1038/s41590-021-00993-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nagasaki T, Schuyler AJ, Zhao J, Samovich SN, Yamada K, Deng Y et al (2022) 15LO1 dictates glutathione redox changes in asthmatic airway epithelium to worsen type 2 inflammation. J Clin Invest 132(1):101172jci151685

    Article  Google Scholar 

  22. Yamane D, Hayashi Y, Matsumoto M, Nakanishi H, Imagawa H, Kohara M et al (2022) FADS2-dependent fatty acid desaturation dictates cellular sensitivity to ferroptosis and permissiveness for hepatitis C virus replication. Cell Chem Biol ;29(5):799–810.e4.https://doi.org/10.1016/j.chembiol.2021.07.022

  23. Arbiser JL, Bonner MY, Ward N, Elsey J, Rao S (2018) Selenium unmasks protective iron armor: a possible defense against cutaneous inflammation and cancer. Biochim Biophys Acta Gen Subj 1862(11):2518–2527. https://doi.org/10.1016/j.bbagen.2018.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shou Y, Yang L, Yang Y, Xu J (2021) Inhibition of keratinocyte ferroptosis suppresses psoriatic inflammation. Cell Death Dis 12(11):1009. https://doi.org/10.1038/s41419-021-04284-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guilloteau K, Paris I, Pedretti N, Boniface K, Juchaux F, Huguier V et al (2010) Skin inflammation Induced by the synergistic action of IL-17A, IL-22, Oncostatin M, IL-1{alpha}, and TNF-{alpha} recapitulates some features of Psoriasis. J Immunol 184(9):5263–5270. https://doi.org/10.4049/jimmunol.0902464

    Article  CAS  PubMed  Google Scholar 

  26. van der Fits L, Mourits S, Voerman JS, Kant M, Boon L, Laman JD et al (2009) Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol ;182(9):5836 – 45.10.4049/jimmunol.0802999

  27. Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J et al (2020) The emerging role of ferroptosis in inflammation. Biomed Pharmacother 127:110108. https://doi.org/10.1016/j.biopha.2020.110108

    Article  CAS  PubMed  Google Scholar 

  28. Zeng J, Zhang Y, Zhang H, Zhang Y, Gao L, Tong X et al (2021) RPL22 Overexpression Promotes Psoriasis-Like Lesion by Inducing Keratinocytes Abnormal Biological Behavior. Front Immunol ;12:699900.10.3389/fimmu.2021.699900

  29. Yin R, Gao L, Tan W, Guo W, Zhao T, Nelson JS et al (2017) Activation of PKCα and PI3K Kinases in Hypertrophic and Nodular Port Wine Stain Lesions. Am J Dermatopathol ;39(10):747-752.10.1097/dad.0000000000000785

  30. Thewes M, Stadler R, Korge B, Mischke D (1991) Normal psoriatic epidermis expression of hyperproliferation-associated keratins. Arch Dermatol Res ;283(7):465 – 71.10.1007/bf00371784

  31. Costanzo A, Fausti F, Spallone G, Moretti F, Narcisi A, Botti E (2015) Programmed cell death in the skin. Int J Dev Biol ;59(1–3):73 – 8.10.1387/ijdb.150050ac

  32. Lei G, Zhuang L, Gan B (2022) Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer ;22(7):381-396.10.1038/s41568-022-00459-0

  33. Griffiths CEM, Armstrong AW, Gudjonsson JE, Barker J (2021) Psoriasis. Lancet ;397(10281):1301-1315.10.1016/s0140-6736(20)32549-6

  34. Hong SH, Lee DH, Lee YS, Jo MJ, Jeong YA, Kwon WT et al (2017) Molecular crosstalk between ferroptosis and apoptosis: emerging role of ER stress-induced p53-independent PUMA expression. Oncotarget 8(70):115164–115178. https://doi.org/10.18632/oncotarget.23046

  35. Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D et al (2019) Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev 2019:5080843. https://doi.org/10.1155/2019/5080843

  36. Tang D, Chen X, Kang R, Kroemer G (2021) Ferroptosis: molecular mechanisms and health implications. Cell Res 31(2):107–125. https://doi.org/10.1038/s41422-020-00441-1

  37. Toulza E, Mattiuzzo NR, Galliano MF, Jonca N, Dossat C, Jacob D et al (2007) Large-scale identification of human genes implicated in epidermal barrier function. Genome Biol 8(6):R107. https://doi.org/10.1186/gb-2007-8-6-r107

  38. Wang D, Xie N, Gao W, Kang R, Tang D (2018) The ferroptosis inducer erastin promotes proliferation and differentiation in human peripheral blood mononuclear cells. Biochem Biophys Res Commun 503(3):1689–1695. https://doi.org/10.1016/j.bbrc.2018.07.100

  39. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ ;25(3):486-541.10.1038/s41418-017-0012-4

  40. Green DR, The Coming Decade of Cell Death Research (2019) : Five Riddles. Cell ;177(5):1094-1107.10.1016/j.cell.2019.04.024

  41. Cui Y, Zhang Z, Zhou X, Zhao Z, Zhao R, Xu X et al (2021) Microglia and macrophage exhibit attenuated inflammatory response and ferroptosis resistance after RSL3 stimulation via increasing Nrf2 expression. J Neuroinflammation ;18(1):249.10.1186/s12974-021-02231-x

  42. Nowowiejska J, Baran A, Hermanowicz JM, Pryczynicz A, Sieklucka B, Pawlak D et al (2023) Gasdermin D (GSDMD) Is Upregulated in Psoriatic Skin-A New Potential Link in the Pathogenesis of Psoriasis. Int J Mol Sci ;24(17)10.3390/ijms241713047

  43. Nowowiejska J, Baran A, Pryczynicz A, Hermanowicz JM, Sieklucka B, Pawlak D et al (2023) Gasdermin E (GSDME)-A New Potential Marker of Psoriasis and Its Metabolic Complications: The First Combined Study on Human Serum, Urine and Tissue. Cells ;12(17)10.3390/cells12172149

  44. Nowowiejska J, Baran A, Pryczynicz A, Hermanowicz JM, Sieklucka B, Pawlak D et al (2024) Gasdermin B (GSDMB) in psoriatic patients-a preliminary comprehensive study on human serum, urine and skin. Front Mol Biosci ;11:1382069.10.3389/fmolb.2024.1382069

  45. Zhang D, Li Y, Du C, Sang L, Liu L, Li Y et al (2022) Evidence of pyroptosis and ferroptosis extensively involved in autoimmune diseases at the single-cell transcriptome level. J Transl Med ;20(1):363.10.1186/s12967-022-03566-6

  46. Lv J, Hou B, Song J, Xu Y, Xie S (2022) The Relationship Between Ferroptosis and Diseases. J Multidiscip Healthc ;15:2261-2275.10.2147/jmdh.S382643

  47. Chen X, Kang R, Kroemer G, Tang D (2021) Ferroptosis in infection, inflammation, and immunity. J Exp Med ;218(6)10.1084/jem.20210518

Download references

Author information

Authors and Affiliations

Authors

Contributions

Wenchuan Li: Conceptualization and Supervision. Jinrong Zeng, Lu zhou, and Zhibing Fu: Writing- Original draft preparation. Qian Hu, Ningling Wu: Investigation, Methodology and Formal analysis. Ningling Wu: Visualization. Xiaoliang Tong: Validation. Lina Tan, Siyu Yan, Lihua Gao, and Dan Wang: Data Curation. Wenchuan Li: Writing - Review & Editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wenchuan Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, N., Hu, Q., Fu, Z. et al. Article file. Arch Dermatol Res 316, 604 (2024). https://doi.org/10.1007/s00403-024-03345-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00403-024-03345-x

Keywords

Navigation