Skip to main content
Log in

Relationship between circulating white blood cell count and inflammatory skin disease: a bidirectional mendelian randomization study

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Observational studies have shown a strong association between circulating white blood cell counts (WBC) and inflammatory skin diseases such as acne and psoriasis. However, the causal nature of this relationship is unclear. We performed a two-way two-sample Mendelian randomization (MR) analysis to investigate potential causal relationships between leukocytes and inflammatory skin diseases. The circulating white blood cell count, basophil cell count, leukocyte cell count, lymphocyte cell count, eosinophil cell count, and neutrophil cell count data were obtained from the Blood Cell Consortium (BCX). The data for inflammatory skin disorders, including acne, atopic dermatitis (AD), hidradenitis suppurativa (HS), psoriasis, and seborrheic dermatitis (SD), were obtained from the FinnGen Consortium R10. The primary analysis utilized inverse variance weighting (IVW) along with additional methods such as MR-Egger, weighted mode, and weighted median estimator. To assess heterogeneity among instrument variables, Cochran’s Q test was employed, while MR-Egger intercept and MR-PRESSO were used to test for horizontal pleiotropy. IVW demonstrated that an elevated monocyte count was significantly associated with a decreased risk of psoriasis (OR = 0.897, 95% CI: 0.841–0.957, P = 0.001, FDR = 0.016). Additionally, an increased eosinophil count was causally associated with a higher risk of AD (OR = 1.188, 95% CI: 1.093–1.293, P = 0.000, FDR = 0.002). No inverse causal relationship between inflammatory skin disease and circulating white blood cell count was found. In conclusion, this study provides evidence that increased monocyte count is associated with a reduced risk of psoriasis and that there is a causal relationship between increased eosinophil counts and an increased risk of AD. These findings help us understand the potential causal role of specific white blood cell counts in the development of inflammatory skin diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The circulating white blood cell count datasets mentioned in the study can be accessed at the Blood Cell Consortium’s online repository (http://www.mhi-humangenetics.org/en/resources/) or the IEU Open GWAS project (https://gwas.mrcieu.ac.uk/). For the inflammatory skin disease datasets, they can be found in the FinnGen Consortium’s repository (https://r10.finngen.fi).

References

  1. Wu H, Yin H, Chen H et al (2020) A deep learning, image based approach for automated diagnosis for inflammatory skin diseases. Annals Translational Med 8(9):581

    Article  CAS  Google Scholar 

  2. Weidinger S, Beck LA, Bieber T, Kabashima K, Irvine AD (2018) Atopic dermatitis. Nat Reviews Disease Primers 4(1):1

    Article  PubMed  Google Scholar 

  3. Armstrong AW, Read C, Pathophysiology (2020) Clinical presentation, and treatment of psoriasis: a review. JAMA 323(19):1945–1960

    Article  CAS  PubMed  Google Scholar 

  4. Clark GW, Pope SM, Jaboori KA (2015) Diagnosis and treatment of seborrheic dermatitis. Am Family Phys 91(3):185–190

    Google Scholar 

  5. Jemec GB (2012) Clinical practice. Hidradenitis suppurativa. N Engl J Med 366(2):158–164

    Article  CAS  PubMed  Google Scholar 

  6. Turkmen D, Altunisik N, Sener S (2020) Investigation of monocyte HDL ratio as an indicator of inflammation and complete blood count parameters in patients with acne vulgaris. Int J Clin Pract 74(12):e13639

    Article  CAS  PubMed  Google Scholar 

  7. Chen T, Chen Y, Shao X et al (2023) Hematological parameters in patients with acnes. J Cosmet Dermatol 22(7):2099–2104

    Article  PubMed  Google Scholar 

  8. Hessam S, Sand M, Gambichler T, Bechara FG (2015) Correlation of inflammatory serum markers with disease severity in patients with hidradenitis suppurativa (HS). J Am Acad Dermatol 73(6):998–1005

    Article  CAS  PubMed  Google Scholar 

  9. Tosun M, Yasak Güner R, Akyol M (2022) Investigation of the relationship between inflammatory blood parameters and seborrheic dermatitis. J Cosmet Dermatol 21(10):5111–5115

    Article  PubMed  Google Scholar 

  10. Rodriguez-Rosales YA, Langereis JD, Gorris MAJ et al (2021) Immunomodulatory aged neutrophils are augmented in blood and skin of psoriasis patients. J Allergy Clin Immunol 148(4):1030–1040

    Article  CAS  PubMed  Google Scholar 

  11. Chiang CC, Cheng WJ, Korinek M, Lin CY, Hwang TL (2019) Neutrophils in Psoriasis. Front Immunol 10:2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang WM, Wu C, Gao YM, Li F, Yu XL, Jin HZ (2021) Neutrophil to lymphocyte ratio, platelet to lymphocyte ratio, and other hematological parameters in psoriasis patients. BMC Immunol 22(1):64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Toma T, Mizuno K, Okamoto H et al (2005) Expansion of activated eosinophils in infants with severe atopic dermatitis. Pediatr Int 47(1):32–38

    Article  PubMed  Google Scholar 

  14. Reilly KM, Yap PL, Dawes J, Barnetson RS, MacKenzie F, Allan TL (1987) Circulating basophil counts in atopic individuals. Int Archives Allergy Appl Immunol 84(4):424–426

    Article  CAS  Google Scholar 

  15. Au Yeung SL, Gill D (2023) Standardizing the reporting of mendelian randomization studies. BMC Med 21(1):187

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu B, Gloudemans MJ, Rao AS, Ingelsson E, Montgomery SB (2019) Abundant associations with gene expression complicate GWAS follow-up. Nat Genet 51(5):768–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen MH, Raffield LM, Mousas A et al (2020) Trans-ethnic and ancestry-specific blood-cell Genetics in 746,667 individuals from 5 global populations. Cell 182(5):1198–1213e1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kurki MI, Karjalainen J, Palta P et al (2023) FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613(7944):508–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smith GD, Ebrahim S (2003) Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 32(1):1–22

    Article  PubMed  Google Scholar 

  20. Hemani G, Tilling K, Davey Smith G (2017) Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet 13(11):e1007081

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hemani G, Zheng J, Elsworth B et al (2018) The MR-Base platform supports systematic causal inference across the human phenome. eLife ;7

  22. Auton A, Brooks LD, Durbin RM et al (2015) A global reference for human genetic variation. Nature 526(7571):68–74

    Article  PubMed  Google Scholar 

  23. Wootton RE, Sallis HM (2020) Let’s call it the effect allele: a suggestion for GWAS naming conventions. Int J Epidemiol 49(5):1734–1735

    Article  PubMed  Google Scholar 

  24. Hartwig FP, Davies NM, Hemani G, Davey Smith G (2016) Two-sample mendelian randomization: avoiding the downsides of a powerful, widely applicable but potentially fallible technique. Int J Epidemiol 45(6):1717–1726

    Article  PubMed  Google Scholar 

  25. Burgess S, Thompson SG (2011) Avoiding bias from weak instruments in mendelian randomization studies. Int J Epidemiol 40(3):755–764

    Article  PubMed  Google Scholar 

  26. Nikolakopoulou A, Mavridis D, Salanti G (2014) How to interpret meta-analysis models: fixed effect and random effects meta-analyses. Evid Based Ment Health 17(2):64

    Article  PubMed  Google Scholar 

  27. Bowden J, Davey Smith G, Haycock PC, Burgess S (2016) Consistent estimation in mendelian randomization with some Invalid instruments using a weighted median estimator. Genet Epidemiol 40(4):304–314

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan N, Thompson J (2017) A framework for the investigation of pleiotropy in two-sample summary data mendelian randomization. Stat Med 36(11):1783–1802

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zuber V, Colijn JM, Klaver C, Burgess S (2020) Selecting likely causal risk factors from high-throughput experiments using multivariable mendelian randomization. Nat Commun 11(1):29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG (2017) Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants. Epidemiol (Cambridge Mass) 28(1):30–42

    Article  Google Scholar 

  31. Slob EAW, Groenen PJF, Thurik AR, Rietveld CA (2017) A note on the use of Egger regression in mendelian randomization studies. Int J Epidemiol 46(6):2094–2097

    Article  PubMed  Google Scholar 

  32. Bowden J, Spiller W, Del Greco MF et al (2018) Improving the visualization, interpretation and analysis of two-sample summary data mendelian randomization via the Radial plot and radial regression. Int J Epidemiol 47(4):1264–1278

    Article  PubMed  PubMed Central  Google Scholar 

  33. Burgess S, Thompson SG (2017) Interpreting findings from mendelian randomization using the MR-Egger method. Eur J Epidemiol 32(5):377–389

    Article  PubMed  PubMed Central  Google Scholar 

  34. Verbanck M, Chen CY, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and diseases. Nat Genet 50(5):693–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu T, Tang L, Feng Y, Jia Y, Li F (2022) Eosinophils and associated parameters in different types of skin diseases related to elevated eosinophil levels. Annals Translational Med 10(2):73

    Article  CAS  Google Scholar 

  36. Byeon JH, Yoon W, Ahn SH, Lee HS, Kim S, Yoo Y (2020) Correlation of serum interleukin-31 with pruritus and blood eosinophil markers in children with atopic dermatitis. Allergy Asthma Proc 41(1):59–65

    Article  CAS  PubMed  Google Scholar 

  37. Holm JG, Hurault G, Agner T et al (2021) Immunoinflammatory biomarkers in serum are Associated with Disease Severity in atopic dermatitis. Dermatology 237(4):513–520

    Article  CAS  PubMed  Google Scholar 

  38. Kägi MK, Joller-Jemelka H, Wüthrich B (1992) Correlation of eosinophils, eosinophil cationic protein and soluble interleukin-2 receptor with the clinical activity of atopic dermatitis. Dermatology 185(2):88–92

    Article  PubMed  Google Scholar 

  39. Nakashima C, Ishida Y, Kitoh A, Otsuka A, Kabashima K (2019) Interaction of peripheral nerves and mast cells, eosinophils, and basophils in the development of pruritus. Exp Dermatol 28(12):1405–1411

    Article  CAS  PubMed  Google Scholar 

  40. Pellefigues C, Naidoo K, Mehta P et al (2021) Basophils promote barrier dysfunction and resolution in the atopic skin. J Allergy Clin Immunol 148(3):799–812e710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yamanishi Y, Mogi K, Takahashi K, Miyake K, Yoshikawa S, Karasuyama H (2020) Skin-infiltrating basophils promote atopic dermatitis-like inflammation via IL-4 production in mice. Allergy 75(10):2613–2622

    Article  CAS  PubMed  Google Scholar 

  42. Silverberg JI (2015) Association between childhood atopic dermatitis, malnutrition, and low bone mineral density: a US population-based study. Pediatr Allergy Immunology: Official Publication Eur Soc Pediatr Allergy Immunol 26(1):54–61

    Article  Google Scholar 

  43. Jiang Y, Ma W (2017) Assessment of Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in atopic dermatitis patients. Med Sci Monitor: Int Med J Experimental Clin Res 23:1340–1346

    Article  CAS  Google Scholar 

  44. Hollestein LM, Ye MYF, Ang KL et al (2023) The association between atopic eczema and lymphopenia: results from a UK cohort study with replication in US survey data. J Eur Acad Dermatology Venereology: JEADV 37(6):1190–1198

    Article  CAS  Google Scholar 

  45. Golden JB, Groft SG, Squeri MV et al (2015) Chronic psoriatic skin inflammation leads to increased monocyte adhesion and aggregation. J Immunol (Baltimore Md: 1950) 195(5):2006–2018

    Article  CAS  Google Scholar 

  46. Bar-Eli M, Gallily R, Cohen HA, Wahba A (1979) Monocyte function in psoriasis. J Invest Dermatol 73(2):147–149

    Article  CAS  PubMed  Google Scholar 

  47. Sabat R, Jemec GBE, Matusiak Ł, Kimball AB, Prens E, Wolk K (2020) Hidradenitis suppurativa. Nat Reviews Disease Primers 6(1):18

    Article  PubMed  Google Scholar 

  48. Goldburg SR, Strober BE, Payette MJ (2020) Hidradenitis suppurativa: Epidemiology, clinical presentation, and pathogenesis. J Am Acad Dermatol 82(5):1045–1058

    Article  CAS  PubMed  Google Scholar 

  49. Yaşar NF, Uylas MU, Baspinar M et al (2016) Evaluating the use of hematological parameters in staging Hidradenitis Suppurativa. Wounds: Compendium Clin Res Pract 28(11):87–91

    Google Scholar 

  50. Miller IM, Ring HC, Prens EP et al (2016) Leukocyte Profile in Peripheral blood and neutrophil-lymphocyte ratio in Hidradenitis Suppurativa: a comparative cross-sectional study of 462 cases. Dermatology 232(4):511–519

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to all the participants and investigators involved in the Blood Cell Consortium and FinnGen studies. We also want to acknowledge the MRC Integrated Epidemiology Unit (IEU) at the University of Bristol for their invaluable contribution in developing the IEU Open GWAS Project.

Funding

Science and Technology Development Foundation of Affiliated Hospital of Chengdu University of Traditional Chinese Medicine (Project number: 21MZ07).

Author information

Authors and Affiliations

Authors

Contributions

J.Y. contributed to the original draft, data curation, investigation, and methodology. Y.C. and Q.W. contributed to the original draft, methodology, and visualization. Q.X. contributed to the review and editing, conceptualization, project administration, resources, and supervision. All authors take responsibility for the content of the work and agree to be held accountable.

Corresponding author

Correspondence to Qinwen Xiao.

Ethics declarations

Ethical approval

No further ethical approval was necessary for this study as we solely utilized publicly available summary-level data for the Mendelian randomization analysis. The original publications of each included study provide information on the ethical approval and informed consent obtained. Moreover, all detailed studies adhered to the principles outlined in the Declaration of Helsinki.

Conflict of interest

The authors state that there were no commercial or financial relationships that could be seen as potential conflicts of interest during the research.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Che, Y., Wang, Q. et al. Relationship between circulating white blood cell count and inflammatory skin disease: a bidirectional mendelian randomization study. Arch Dermatol Res 316, 504 (2024). https://doi.org/10.1007/s00403-024-03241-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00403-024-03241-4

Keywords

Navigation