Skip to main content

Advertisement

Log in

Genomic correlation, shared loci, and causal relationship between insomnia and psoriasis: a large-scale genome-wide cross-trait analysis

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Psoriasis and insomnia have co-morbidities, however, their common genetic basis is still unclear. We analyzed psoriasis and insomnia with summary statistics from genome-wide association studies. We first quantified overall genetic correlations, then ascertained multiple effector loci and expression-trait associations, and lastly, we analyzed the causal effects between psoriasis and insomnia. A prevalent genetic link between psoriasis and insomnia was found, four pleiotropic loci affecting psoriasis and insomnia were identified, and 154 genes were shared, indicating a genetic link between psoriasis and insomnia. Yet, there is no causal relationship between psoriasis and insomnia by two-sample Mendelian randomization. We discovered a genetic connection between insomnia and psoriasis driven by biological pleiotropy and unrelated to causation. Cross-trait analysis indicates a common genetic basis for psoriasis and insomnia. The results of this study highlight the importance of sleep management in the pathogenesis of psoriasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The GWAS data involved in this study are publicly available and the code covered can be obtained from the corresponding author under a reasonable request.

Abbreviations

GWAS:

Genome-wide association study

TWAS:

Transcriptome-wide association study

CPASSOC:

Cross-phenotype association analysis

LD:

Linkage disequilibrium

eQTL:

Expression quantitative trait loci

IVW:

Inverse variance weighting

IVs:

Instrumental variables

MR:

Mendelian randomization

MR-PRESSO:

MR pleiotropy residual sum and outlier

MOG:

Myelin Oligodendrocyte Glycoprotein

MAP2K5:

Mitogen-Activated Protein Kinase Kinase 5

LDSC:

Linkage disequilibrium score regression

References

  1. Griffiths CEM, Armstrong AW, Gudjonsson JE et al (2021) Psoriasis Lancet 397:1301–1315. https://doi.org/10.1016/s0140-6736(20)32549-6

    Article  CAS  PubMed  Google Scholar 

  2. Takeshita J, Grewal S, Langan SM et al (2017) Psoriasis and comorbid diseases: Epidemiology. J Am Acad Dermatol 76:377–390. https://doi.org/10.1016/j.jaad.2016.07.064

    Article  PubMed  PubMed Central  Google Scholar 

  3. Singh S, Taylor C, Kornmehl H et al (2017) Psoriasis and suicidality: a systematic review and meta-analysis. J Am Acad Dermatol 77:425–440. https://doi.org/10.1016/j.jaad.2017.05.019

    Article  PubMed  Google Scholar 

  4. Wu Y, Mills D, Bala M (2008) Psoriasis: cardiovascular risk factors and other disease comorbidities. J Drugs Dermatol 7:373–377

    PubMed  Google Scholar 

  5. Myers B, Vidhatha R, Nicholas B et al (2021) Sleep and the gut microbiome in psoriasis: clinical implications for disease progression and the development of cardiometabolic comorbidities. J Psoriasis Psoriatic Arthritis 6:27–37. https://doi.org/10.1177/2475530320964781

    Article  PubMed  Google Scholar 

  6. Henderson AD, Adesanya E, Mulick A et al (2023) Common mental health disorders in adults with inflammatory skin conditions: nationwide population-based matched cohort studies in the UK. BMC Med 21:285. https://doi.org/10.1186/s12916-023-02948-x

    Article  PubMed  PubMed Central  Google Scholar 

  7. Smith MP, Ly K, Thibodeaux Q et al (2019) Factors influencing Sleep Difficulty and Sleep Quantity in the Citizen Pscientist Psoriatic Cohort. Dermatol Ther (Heidelb) 9:511–523. https://doi.org/10.1007/s13555-019-0306-1

    Article  PubMed  Google Scholar 

  8. Vlami K, Pantelidi K, Dalamaga M et al (2023) Psoriatic insomnia: a subjective and objective sleep evaluation. Acta Derm Venereol 103:adv00864. https://doi.org/10.2340/actadv.v103.4507

    Article  PubMed  Google Scholar 

  9. Soliman MM (2021) Depressive, anxiety, stress, and insomnia symptoms in patients with psoriasis: a cross-sectional study. Postepy Dermatol Alergol 38:510–519. https://doi.org/10.5114/ada.2020.98726

    Article  PubMed  Google Scholar 

  10. Jensen P, Zachariae C, Skov L et al (2018) Sleep disturbance in psoriasis: a case-controlled study. Br J Dermatol 179:1376–1384. https://doi.org/10.1111/bjd.16702

    Article  CAS  PubMed  Google Scholar 

  11. Chalitsios CV, Georgiou A, Bouras E et al (2023) Investigating modifiable pathways in psoriasis: a mendelian randomization study. J Am Acad Dermatol 88:593–601. https://doi.org/10.1016/j.jaad.2022.11.010

    Article  CAS  PubMed  Google Scholar 

  12. Kurki MI, Karjalainen J, Palta P et al (2023) FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613:508–518. https://doi.org/10.1038/s41586-022-05473-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bulik-Sullivan B, Finucane HK, Anttila V et al (2015) An atlas of genetic correlations across human diseases and traits. Nat Genet 47:1236–1241. https://doi.org/10.1038/ng.3406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu X, Feng T, Tayo BO et al (2015) Meta-analysis of correlated traits via summary statistics from GWASs with an application in hypertension. Am J Hum Genet 96:21–36. https://doi.org/10.1016/j.ajhg.2014.11.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. https://doi.org/10.1086/519795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Q, Tang B, Zhu Z et al (2022) A genome-wide cross-trait analysis identifies shared loci and causal relationships of type 2 diabetes and glycaemic traits with polycystic ovary syndrome. Diabetologia 65:1483–1494. https://doi.org/10.1007/s00125-022-05746-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gusev A, Ko A, Shi H et al (2016) Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet 48:245–252. https://doi.org/10.1038/ng.3506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burgess S, Butterworth A, Thompson SG (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 37:658–665. https://doi.org/10.1002/gepi.21758

    Article  PubMed  PubMed Central  Google Scholar 

  19. Verbanck M, Chen CY, Neale B et al (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and diseases. Nat Genet 50:693–698. https://doi.org/10.1038/s41588-018-0099-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smith T, Rohaim MA, Munir M (2022) Mapping molecular gene signatures mediated by SARS-COV-2 and large-scale and genome-wide transcriptomics comparative analysis among respiratory viruses of medical importance. Mol Cell Probes 64:101820. https://doi.org/10.1016/j.mcp.2022.101820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ding Y, Ouyang Z, Zhang C et al (2020) Tyrosine phosphatase SHP2 exacerbates psoriasis-like skin inflammation in mice via ERK5-dependent NETosis. MedComm 3(2022):e120. https://doi.org/10.1002/mco2.120

    Article  CAS  Google Scholar 

  22. Lu C, Wang HJ, Song JY et al (2022) Fine mapping of the MAP2K5 Region identified rs7175517 as a causal variant related to BMI in China and the United Kingdom populations. Front Genet 13:838685. https://doi.org/10.3389/fgene.2022.838685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kumar S, Han J, Li T et al (2013) Obesity, waist circumference, weight change and the risk of psoriasis in US women. J Eur Acad Dermatol Venereol 27:1293–1298. https://doi.org/10.1111/jdv.12001

    Article  CAS  PubMed  Google Scholar 

  24. Jensen P, Skov L (2016) Psoriasis and obesity. Dermatology 232:633–639. https://doi.org/10.1159/000455840

    Article  PubMed  Google Scholar 

  25. Moore Ht, Winkelmann J, Lin L, Sleep et al (2014) 37 1535–1542. https://doi.org/10.5665/sleep.4006

  26. Mayer MC, Meinl E (2012) Glycoproteins as targets of autoantibodies in CNS inflammation: MOG and more. Ther Adv Neurol Disord 5:147–159. https://doi.org/10.1177/1756285611433772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brod SA (2016) Ingested (oral) anti-IL-12/23 inhibits EAE. J Neurol Sci 361:19–25. https://doi.org/10.1016/j.jns.2015.12.011

    Article  CAS  PubMed  Google Scholar 

  28. Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6:389–402. https://doi.org/10.1038/nrg1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Annesley SJ, Fisher PR (2019) Mitochondria in Health and Disease. Cells 8. https://doi.org/10.3390/cells8070680

  30. Zhang Y, Li Y, Zhou L et al (2022) Nav1.8 in keratinocytes contributes to ROS-mediated inflammation in inflammatory skin diseases. Redox Biol 55:102427. https://doi.org/10.1016/j.redox.2022.102427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Therianou A, Vasiadi M, Delivanis DA et al (2019) Mitochondrial dysfunction in affected skin and increased mitochondrial DNA in serum from patients with psoriasis. Exp Dermatol 28:72–75. https://doi.org/10.1111/exd.13831

    Article  CAS  PubMed  Google Scholar 

  32. Mizuguchi S, Gotoh K, Nakashima Y et al (2021) Mitochondrial reactive oxygen species are essential for the development of psoriatic inflammation. Front Immunol 12:714897. https://doi.org/10.3389/fimmu.2021.714897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Addison R, Weatherhead SC, Pawitri A et al (2021) Therapeutic wavelengths of ultraviolet B radiation activate apoptotic, circadian rhythm, redox signalling and key canonical pathways in psoriatic epidermis. Redox Biol 41:101924. https://doi.org/10.1016/j.redox.2021.101924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim SA, Kim S, Park HJ (2022) Deprivation induces mitochondrial Biogenesis in the Rat Hippocampus. Vivo 36:1726–1733. https://doi.org/10.21873/invivo.12885

    Article  CAS  Google Scholar 

  35. Bin Heyat MB, Akhtar F, Sultana A et al (2022) Role of oxidative stress and inflammation in Insomnia Sleep Disorder and Cardiovascular diseases: Herbal antioxidants and anti-inflammatory coupled with Insomnia detection using machine learning. Curr Pharm Des 28:3618–3636. https://doi.org/10.2174/1381612829666221201161636

    Article  CAS  PubMed  Google Scholar 

  36. Sakurai T (2012) The role of NrCAM in neural development and disorders–beyond a simple glue in the brain. Mol Cell Neurosci 49:351–363. https://doi.org/10.1016/j.mcn.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  37. Baran A, Nowowiejska J, Hermanowicz JM et al (2022) The potential role of serum tau protein (MAPT), neuronal cell adhesion molecule (NrCAM) and Neprilysin (NEP) in neurodegenerative disorders Development in Psoriasis-Preliminary results. J Clin Med 11. https://doi.org/10.3390/jcm11175044

  38. Steinmayr M, André E, Conquet F et al (1998) Staggerer phenotype in retinoid-related orphan receptor alpha-deficient mice. Proc Natl Acad Sci U S A 95:3960–3965. https://doi.org/10.1073/pnas.95.7.3960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Korn T, Bettelli E, Oukka M et al (2009) IL-17 and Th17 cells. Annu Rev Immunol 27:485–517. https://doi.org/10.1146/annurev.immunol.021908.132710

    Article  CAS  PubMed  Google Scholar 

  40. Ghoreschi K, Balato A, Enerbäck C et al (2021) Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet 397:754–766. https://doi.org/10.1016/s0140-6736(21)00184-7

    Article  CAS  PubMed  Google Scholar 

  41. Ferreira ACF, Szeto ACH, Heycock MWD et al (2021) RORα is a critical checkpoint for T cell and ILC2 commitment in the embryonic thymus. Nat Immunol 22:166–178. https://doi.org/10.1038/s41590-020-00833-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vivier E, Artis D, Colonna M et al (2018) Innate lymphoid cells: 10 years on. Cell 174:1054–1066. https://doi.org/10.1016/j.cell.2018.07.017

    Article  CAS  PubMed  Google Scholar 

  43. Soare A, Weber S, Maul L et al (2018) Cutting Edge: Homeostasis of Innate lymphoid cells is Imbalanced in Psoriatic Arthritis. J Immunol 200:1249–1254. https://doi.org/10.4049/jimmunol.1700596

    Article  CAS  PubMed  Google Scholar 

  44. Kojetin DJ, Burris TP (2014) REV-ERB and ROR nuclear receptors as drug targets. Nat Rev Drug Discov 13:197–216. https://doi.org/10.1038/nrd4100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sato TK, Panda S, Miraglia LJ et al (2004) A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43:527–537. https://doi.org/10.1016/j.neuron.2004.07.018

    Article  CAS  PubMed  Google Scholar 

  46. Raychaudhuri SK, Maverakis E, Raychaudhuri SP (2014) Diagnosis and classification of psoriasis. Autoimmun Rev 13:490–495. https://doi.org/10.1016/j.autrev.2014.01.008

    Article  PubMed  Google Scholar 

  47. Burshtein J, Strunk A, Garg A (2021) Incidence of psoriasis among adults in the United States: a sex- and age-adjusted population analysis. J Am Acad Dermatol 84:1023–1029. https://doi.org/10.1016/j.jaad.2020.11.039

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the UK Biobank, the FinnGen genomics research project, and other teams, who generously shared the GWAS data.

Funding

This work was supported by National Natural Science Foundation of China (82374313), State key laboratory of Dampness Syndrome of Chinese Medicine Special Fund (SZ2021ZZ29), and Research Fund for Bajian Talents of Guangdong Provincial Hospital of Chinese Medicine (No. BJ2022KY05), the Guangzhou Science and Technology Plan project-Municipal School (College) joint funding project (202201020332, 202201020320).

Author information

Authors and Affiliations

Authors

Contributions

QW conceived and presented the idea. QW, YW, and XW processed data and manuscript writing. JZ and LL participated in the acquisition and interpretation of data. JW, YL and LH discussed and reviewed the manuscript critically. All authors contributed to the article and have checked and approved the version of this article as submitted.

Corresponding authors

Correspondence to Jingjing Wu, Yue Lu or Ling Han.

Ethics declarations

Ethical approval

Our study is based on source open-source data, so there are no ethical issues or other conflicts of interest. The patients involved in the database have obtained ethical approval. Users can download relevant data for free for research and publish relevant articles.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Wu, Y., Wang, X. et al. Genomic correlation, shared loci, and causal relationship between insomnia and psoriasis: a large-scale genome-wide cross-trait analysis. Arch Dermatol Res 316, 425 (2024). https://doi.org/10.1007/s00403-024-03178-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00403-024-03178-8

Keywords

Navigation