Skip to main content

Advertisement

Log in

The potential cutaneous benefits of Carthamus tinctorius oleosomes

  • REVIEW
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Safflower (Carthamus tinctorius) oleosomes are unique organelles that house triglycerides and fatty acids and demonstrate a natural resilience to environmental stresses. There is recent growing interest in safflower oleosomes due to their potential applications in dermatology, especially as a carrier technology to improve drug penetration through the skin. This paper explores various aspects of safflower oleosomes, including their production, safety, absorption, and applications in photoprotection and epidermal remodeling. Oleosomes have shown encouraging results in targeted drug delivery in in vitro and in vivo animal models; however, human clinical research is required to determine their efficacy and safety in dermatology. Oleosomes are comprise a novel biotechnology that has the potential to transform sustainable and natural treatments in dermatology by utilizing their unique structure. Safflower oleosomes are stable lipid molecules that can deliver small and large molecules with high efficacy. This review will examine the current research findings and prospective future applications of oleosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data that support the evidence presented in this article is accessible from public databases including PubMed.

References

  1. Wu X et al (2021) Extraction, structures, bioactivities and structure-function analysis of the polysaccharides from safflower (Carthamus tinctorius L.). Front Pharmacol 12:767947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lacey DJ et al (1998) Secondary structure of oleosins in oil bodies isolated from seeds of safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.). Biochem J 334(Pt 2):469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Asgarpanah J, Kazemivash N (2013) Phytochemistry, pharmacology and medicinal properties of Carthamus tinctorius L. Chin J Integr Med 19(2):153–159

    Article  CAS  PubMed  Google Scholar 

  4. Nikiforidis CV (2019) Structure and functions of oleosomes (oil bodies). Adv Colloid Interface Sci 274:102039

    Article  CAS  PubMed  Google Scholar 

  5. Cai J et al (2018) Oil body bound oleosin-rhFGF9 fusion protein expressed in safflower (Carthamus tinctorius L.) stimulates hair growth and wound healing in mice. BMC Biotechnol 18(1):51

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bhatla SC, Kaushik V, Yadav MK (2010) Use of oil bodies and oleosins in recombinant protein production and other biotechnological applications. Biotechnol Adv 28(3):293–300

    Article  CAS  PubMed  Google Scholar 

  7. Siegel DM, Jakus J, Hooper D (2019) Topical natural products in managing dermatologic conditions: observations and recommendations. Cutis 103(4):233–236

    PubMed  Google Scholar 

  8. Suphasomboon T, Vassanadumrongdee S (2022) Toward sustainable consumption of green cosmetics and personal care products: the role of perceived value and ethical concern. Sustain Prod Consum 33:230–243

    Article  Google Scholar 

  9. Deckers HM, Rooijen G, Boothe J, Goll J, Moloney MM (2003) Products for topical applications comprising oil bodies. US. Pat. 6582710 B2

  10. Monteiro N et al (2014) Liposomes in tissue engineering and regenerative medicine. J R Soc Interface 11(101):20140459

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nikiforidis CV, Kiosseoglou V, Scholten E (2013) Oil bodies: An insight on their microstructure—maize germ vs sunflower seed. Food Res Int 52(1):136–141

    Article  CAS  Google Scholar 

  12. Murphy DJ (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40(5):325–438

    Article  CAS  PubMed  Google Scholar 

  13. Zhou X et al (2014) Towards a better understanding of medicinal uses of Carthamus tinctorius L. in traditional Chinese medicine: a phytochemical and pharmacological review. J Ethnopharmacol 151(1):27–43

    Article  CAS  Google Scholar 

  14. Ottaviani M, Camera E, Picardo M (2010) Lipid mediators in acne. Mediators Inflamm 2010:1–6

    Article  Google Scholar 

  15. Chen MC, Wang JL, Tzen JT (2005) Elevating bioavailability of cyclosporine a via encapsulation in artificial oil bodies stabilized by caleosin. Biotechnol Prog 21(4):1297–1301

    Article  CAS  Google Scholar 

  16. Kahraman E, ŞahinBektay H, Güngör S (2019) Recent advances on topical application of ceramides to restore barrier function of skin. Cosmetics 6(3):52

    Article  CAS  Google Scholar 

  17. Li X et al (2020) Efficacy and safety of a topical moisturizer containing linoleic acid and ceramide for mild-to-moderate psoriasis vulgaris: a multicenter randomized controlled trial. Dermatol Ther 33(6):e14263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dubrac S, Schmuth M (2011) PPAR-alpha in cutaneous inflammation. Dermatoendocrinology 3(1):23–26

    Article  CAS  Google Scholar 

  19. Stobart AK, Stymne S, Hoglund S (1986) Safflower microsomes catalyse oil accumulation in vitro: a model system. Planta 169(1):33–37

    Article  CAS  PubMed  Google Scholar 

  20. Acevedo F et al (2014) Oil bodies as a potential microencapsulation carrier for astaxanthin stabilisation and safe delivery. J Microencapsul 31(5):488–500

    Article  CAS  PubMed  Google Scholar 

  21. Lu Y, Qi J, Wu W (2012) Absorption, disposition and pharmacokinetics of nanoemulsions. Curr Drug Metab 13(4):396–417

    Article  CAS  PubMed  Google Scholar 

  22. Solanki K et al (2005) Transcutaneous absorption of topically massaged oil in neonates. Indian Pediatr 42(10):998–1005

    PubMed  Google Scholar 

  23. Yang M, Zhou M, Song L (2020) A review of fatty acids influencing skin condition. J Cosmet Dermatol 19(12):3199–3204

    Article  PubMed  Google Scholar 

  24. Cho HY et al (2018) Magnetic oleosome as a functional lipophilic drug carrier for cancer therapy. ACS Appl Mater Interfaces 10(11):9301–9309

    Article  CAS  PubMed  Google Scholar 

  25. Abdelalim LR, Elnaggar YSR, Abdallah OY (2020) Oleosomes encapsulating sildenafil citrate as potential topical nanotherapy for palmar plantar erythrodysesthesia with high ex vivo permeation and deposition. AAPS PharmSciTech 21(8):310

    Article  CAS  PubMed  Google Scholar 

  26. Gruber JV, Holtz R, In Yang S (2018) In vitro examination of an oleosome-based sun protection product on the influence of UVB-induced inflammation markers in human epidermal skin equivalent tissue model. J Photochem Photobiol B 179:39–45

    Article  CAS  PubMed  Google Scholar 

  27. Clydesdale GJ, Dandie GW, Muller HK (2001) Ultraviolet light induced injury: immunological and inflammatory effects. Immunol Cell Biol 79(6):547–568

    Article  CAS  PubMed  Google Scholar 

  28. Huang J et al (2017) Expression of bioactive recombinant human fibroblast growth factor 10 in Carthamus tinctorius L. seeds. Protein Expr Purif 138:7–12

    Article  CAS  PubMed  Google Scholar 

  29. Steiling H, Werner S (2003) Fibroblast growth factors: key players in epithelial morphogenesis, repair and cytoprotection. Curr Opin Biotechnol 14(5):533–537

    Article  CAS  PubMed  Google Scholar 

  30. Lan X et al (2022) Xanthan gum/oil body-microgel emulsions with enhanced transdermal absorption for accelerating wound healing. Int J Biol Macromol 222(Pt A):1376–1387

    Article  CAS  PubMed  Google Scholar 

  31. Elhalmoushy PM et al (2023) Elaboration of novel gel-core oleosomes encapsulating phytoconstituent for targeted topical delivery in a vitiligo-induced mouse model: Focus on antioxidant and anti-inflammatory pathways. J Drug Deliv Sci Technol 80:104119

    Article  CAS  Google Scholar 

  32. Lan X et al (2021) Dermal toxicity, dermal irritation, and delayed contact sensitization evaluation of oil body linked oleosin-hEGF microgel emulsion via transdermal drug delivery for wound healing. Cutan Ocul Toxicol 40(1):45–53

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

PP performed the literature search and wrote the main manuscript. JW and JM helped to review the manuscript. JJ helped to develop the concept and edit/review the final manuscript.

Corresponding author

Correspondence to Jared Jagdeo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, P., Wang, J.Y., Mineroff, J. et al. The potential cutaneous benefits of Carthamus tinctorius oleosomes. Arch Dermatol Res 316, 26 (2024). https://doi.org/10.1007/s00403-023-02750-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00403-023-02750-y

Keywords

Navigation