Skip to main content

Advertisement

Log in

New algorithms based on autophagy-related lncRNAs pairs to predict the prognosis of skin cutaneous melanoma patients

  • ORIGINAL PAPER
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Skin cutaneous melanoma (SKCM) is the most malignant skin tumor for it is enormously easy to develop invasion and metastasis. Autophagy is a process by which cellular material is degraded by lysosomes or vacuoles and recycled. Autophagy-related long non-coding RNAs (lncRNAs) have been thought to correlate with SKCM. This study aims to explore the prognostic significance of autophagy-related lncRNAs and establish a prognostic model of autophagy-related lncRNA pairs in SKCM. Firstly, the RNA-seq data and related clinical information were downloaded from the TCGA database. 446 qualified samples were enrolled. 222 autophagy-related genes were obtained from the HADb database. Pearson correlation analysis was conducted to identify autophagy-related lncRNAs (ARLs). After that, we obtained prognosis-related ARLs and autophagy-related lncRNA pairs (ARLPs). Using Lasso-Cox regression analysis, an autophagy-related lncRNA-pair prognostic signature was established. The accuracy of the signature were confirmed through a series of validations in terms of mutation profiles, immunity infiltration, and cellular pathways. And we used the random forest method to find USP30-AS1 as a key mediating factor in SKCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

SKCM:

Skin cutaneous melanoma

lncRNA:

Long non-coding RNA

ARLs:

Autophagy-related lncRNAs

ARLPs:

Autophagy-related lncRNA pairs

AMBRA1:

Beclin 1-regulated autophagy protein 1

AC:

Acid ceramidase

ARGs:

Autophagy-related genes

TCGA:

The cancer genome atlas

HADb:

Human autophagy database

KM:

Kaplan–Meier

PRARLs:

Prognosis-related ARLs

Coef:

Coefficient

ROC:

Receiver operator characteristic curve

DSS:

Disease specific survival

CCM:

Calibration curve method

C-index:

Concordance-index

DCA:

Decision curve analysis

TMB:

Tumor mutation burden

GSEA:

Gene set enrichment analysis

WGCNA:

Weighted gene co-expression network analysis

TOM:

Topology overlap measurement

GS:

Gene significance

MS:

Module significance

TIP:

Tracking tumor immunophenotype

IPS:

Immunophenoscore

HRs:

Hazard ratios

CIs:

Confidence intervals

VAF:

Variant allele frequency

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

PD-1:

Programmed cell death-1

USP30-AS1:

USP30 antisense RNA 1

References

  1. Davis LE, Shalin SC, Tackett AJ (2019) Current state of melanoma diagnosis and treatment. Cancer Biol Ther 20(11):1366–1379. https://doi.org/10.1080/15384047.2019.1640032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Namikawa K, Yamazaki N (2019) Targeted therapy and immunotherapy for melanoma in Japan. Curr Treat Options Oncol 20(1):7. https://doi.org/10.1007/s11864-019-0607-8

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rastrelli M, Tropea S, Rossi CR, Alaibac M (2014) Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo 28(6):1005–1011

    PubMed  Google Scholar 

  4. Yun CW, Lee SH (2018) The roles of autophagy in cancer. Int J Mol Sci. 19(11):3466. https://doi.org/10.3390/ijms19113466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mowers EE, Sharifi MN, Macleod KF (2018) Functions of autophagy in the tumor microenvironment and cancer metastasis. FEBS J 285(10):1751–1766. https://doi.org/10.1111/febs.14388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Amaravadi R, Kimmelman AC, White E (2016) Recent insights into the function of autophagy in cancer. Genes Dev 30(17):1913–1930. https://doi.org/10.1101/gad.287524.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ndoye A, Weeraratna AT (2016) Autophagy- an emerging target for melanoma therapy. F1000Res. https://doi.org/10.1268/f1000research.8347.1

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tang DY, Ellis RA, Lovat PE (2016) Prognostic impact of autophagy biomarkers for cutaneous melanoma. Front Oncol. 6:236. https://doi.org/10.3389/fonc.2016.00236

    Article  PubMed  PubMed Central  Google Scholar 

  9. D’Arcangelo D, Giampietri C, Muscio M, Scatozza F, Facchiano F, Facchiano A (2018) WIPI1, BAG1, and PEX3 autophagy-related genes are relevant melanoma markers. Oxid Med Cell Longev. 2018:1471682. https://doi.org/10.1155/2018/1471682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lai M, La Rocca V, Amato R, Freer G, Pistello M (2019) Sphingolipid/ceramide pathways and autophagy in the onset and progression of melanoma: novel therapeutic targets and opportunities. Int J Mol Sci. 20(14):3436. https://doi.org/10.3390/ijms20143436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chi Y, Wang D, Wang J, Yu W, Yang J (2019) Long non-coding RNA in the pathogenesis of cancers. Cells. 8(9):1015. https://doi.org/10.3390/cells8091015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schmitz SU, Grote P, Herrmann BG (2016) Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci 73(13):2491–2509. https://doi.org/10.1007/s00018-016-2174-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gutschner T, Diederichs S (2012) The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 9(6):703–719. https://doi.org/10.4161/rna.20481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kondo Y, Shinjo K, Katsushima K (2017) Long non-coding RNAs as an epigenetic regulator in human cancers. Cancer Sci 108(10):1927–1933. https://doi.org/10.1111/cas.13342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Peng Y, Tang D, Zhao M, Kajiyama H, Kikkawa F, Kondo Y (2020) Long non-coding RNA: a recently accentuated molecule in chemoresistance in cancer. Cancer Metastasis Rev 39(3):825–835. https://doi.org/10.1007/s10555-020-09910-w

    Article  CAS  PubMed  Google Scholar 

  16. Zhang J, Wang P, Wan L, Xu S, Pang D (2017) The emergence of noncoding RNAs as Heracles in autophagy. Autophagy 13(6):1004–1024. https://doi.org/10.1080/15548627.2017.1312041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sun T (2018) Long noncoding RNAs act as regulators of autophagy in cancer. Pharmacol Res 129:151–155. https://doi.org/10.1016/j.phrs.2017.11.009

    Article  CAS  PubMed  Google Scholar 

  18. Shu Q, Zhou Y, Zhu Z et al (2022) A novel risk model based on autophagy-related LncRNAs predicts prognosis and indicates immune infiltration landscape of patients with cutaneous melanoma. Front Genet. 13:885391. https://doi.org/10.3389/fgene.2022.885391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qiu Y, Wang HT, Zheng XF et al (2022) Autophagy-related long non-coding RNA prognostic model predicts prognosis and survival of melanoma patients. World J Clin Cases 10(11):3334–3351. https://doi.org/10.12998/wjcc.v10.i11.3334

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ding Y, Li T, Li M et al (2021) A novel autophagy-related lncRNA gene signature to improve the prognosis of patients with melanoma. Biomed Res Int. 2021:8848227. https://doi.org/10.1155/2021/8848227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1–22

    Article  PubMed  PubMed Central  Google Scholar 

  22. Simon N, Friedman J, Hastie T, Tibshirani R (2011) Regularization paths for cox’s proportional hazards model via coordinate descent. J Stat Softw 39(5):1–13. https://doi.org/10.18637/jss.v039.i05

    Article  PubMed  PubMed Central  Google Scholar 

  23. Langfelder P, Horvath S (2012) Fast R functions for robust correlations and hierarchical clustering. J Stat Softw 46(11):i11

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li A, Horvath S (2009) Network module detection: affinity search technique with the multi-node topological overlap measure. BMC Res Notes. 2:142. https://doi.org/10.1186/1756-0500-2-142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Langfelder P, Zhang B, Horvath S (2008) Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for R. Bioinformatics 24(5):719–720. https://doi.org/10.1093/bioinformatics/btm563

    Article  CAS  PubMed  Google Scholar 

  26. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F et al (2016) Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 17:218. https://doi.org/10.1186/s13059-016-1070-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Newman AM, Liu CL, Green MR et al (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12(5):453–457. https://doi.org/10.1038/nmeth.3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18(1):220. https://doi.org/10.1186/s13059-017-1349-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS et al (2017) TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res 77(21):e108–e110. https://doi.org/10.1158/0008-5472.CAN-17-0307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van Veldhoven CM, Khan AE, Teucher B, Rohrmann S, Raaschou-Nielsen O, Tjønneland A et al (2011) Physical activity and lymphoid neoplasms in the European prospective investigation into cancer and nutrition (EPIC). Eur J Cancer 47(5):748–760. https://doi.org/10.1016/j.ejca.2010.11.010

    Article  PubMed  Google Scholar 

  31. Tamminga M, Hiltermann TJN, Schuuring E, Timens W, Fehrmann RS, Groen HJ (2020) Immune microenvironment composition in non-small cell lung cancer and its association with survival. Clin Transl Immunology. 9(6):e1142. https://doi.org/10.1002/cti2.1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Finotello F, Mayer C, Plattner C et al (2019) Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med. 11(1):34. https://doi.org/10.1186/s13073-019-0638-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu L, Deng C, Pang B et al (2018) TIP: a web server for resolving tumor immunophenotype profiling. Cancer Res 78(23):6575–6580. https://doi.org/10.1158/0008-5472.CAN-18-0689

    Article  CAS  PubMed  Google Scholar 

  34. Barbie DA, Tamayo P, Boehm JS et al (2009) Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462(7269):108–112. https://doi.org/10.1038/nature08460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Balachandran VP, Gonen M, Smith JJ, DeMatteo RP (2015) Nomograms in oncology: more than meets the eye. Lancet Oncol 16(4):e173–e180. https://doi.org/10.1016/S1470-2045(14)71116-7

    Article  PubMed  PubMed Central  Google Scholar 

  36. Peng M, Mo Y, Wang Y et al (2019) Neoantigen vaccine: an emerging tumor immunotherapy. Mol Cancer. 18(1):128. https://doi.org/10.1186/s12943-019-1055-6

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang Z, Lu M, Qin Y et al (2021) Neoantigen: a new breakthrough in tumor immunotherapy. Front Immunol. 12:672356. https://doi.org/10.3389/fimmu.2021.672356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bruni D, Angell HK, Galon J (2020) The immune contexture and immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer 20(11):662–680. https://doi.org/10.1038/s41568-020-0285-7

    Article  CAS  PubMed  Google Scholar 

  39. Charoentong P, Finotello F, Angelova M et al (2017) Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 18(1):248–262. https://doi.org/10.1016/j.celrep.2016.12.019

    Article  CAS  PubMed  Google Scholar 

  40. Wang N, Li J, Xin Q, Xu N (2021) USP30-AS1 contributes to mitochondrial quality control in glioblastoma cells. Biochem Biophys Res Commun 581:31–37. https://doi.org/10.1016/j.bbrc.2021.10.006

    Article  CAS  PubMed  Google Scholar 

  41. Chen M, Chi Y, Chen H, Zhao L (2021) Long non-coding RNA USP30-AS1 aggravates the malignant progression of cervical cancer by sequestering microRNA-299-3p and thereby overexpressing PTP4A1. Oncol Lett 22(1):505. https://doi.org/10.3892/ol.2021.12766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen P, Gao Y, Ouyang S et al (2020) A prognostic model based on immune-related long non-coding RNAs for patients with cervical cancer. Front Pharmacol. 11:585255. https://doi.org/10.3389/fphar.2020.585255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun Z, Jing C, Xiao C, Li T (2020) An autophagy-related long non-coding RNA prognostic signature accurately predicts survival outcomes in bladder urothelial carcinoma patients. Aging (Albany NY) 12(15):15624–15637. https://doi.org/10.18632/aging.103718

    Article  CAS  PubMed  Google Scholar 

  44. Meng C, Zhou JQ, Liao YS (2020) Autophagy-related long non-coding RNA signature for ovarian cancer. J Int Med Res 48(11):300060520970761. https://doi.org/10.1177/0300060520970761

    Article  CAS  PubMed  Google Scholar 

  45. Gao M, Wang X, Han D et al (2021) A six-lncRNA signature for immunophenotype prediction of glioblastoma multiforme. Front Genet. 11:604655. https://doi.org/10.3389/fgene.2020.604655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

YYL and HXZ: are responsible for writing and submitting the papers, collecting and analyzing data, managing all pictures and tables; DLH and SXL: are responsible for the ideas and guidance. The authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Delin Hu or Shengxiu Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval and consent to participate

There are no animal or human trials in our research. No ethical requirements are involved. All data in this study was from public databases, so there was no need for patients to sign the consents.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, H., Hu, D. et al. New algorithms based on autophagy-related lncRNAs pairs to predict the prognosis of skin cutaneous melanoma patients. Arch Dermatol Res 315, 1511–1526 (2023). https://doi.org/10.1007/s00403-022-02522-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-022-02522-0

Keywords

Navigation