Skip to main content

Advertisement

Log in

Cutaneous effects of photobiomodulation with 1072 nm light

  • REVIEW
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Photobiomodulation, also known as low-level light therapy, has gained popularity in treating a variety of dermatologic and non-dermatologic conditions. The near-infrared (NIR) portion ranging from 700 to 1440 nm has a broad spectrum but most current research focuses on relatively shorter wavelengths. To date, clinical research regarding the application of 1072 NIR is limited to treatments for infections and photorejuvenation treatment in females. However, 1072 NIR light therapy may benefit male patients. This theoretical application is based on the biological properties of this subgroup having increased cutaneous density and thickness and the physical properties of 1072 NIR allowing it to penetrate increased depth. 1072 NIR can reach more cells throughout the epidermis and dermis compared to other parts of the electromagnetic spectrum traditionally used in phototherapy to provide unique and targeted benefits. 1072 NIR light-emitting diodes are commercially available and therefore hold tremendous potential to become accessible, affordable treatment options. Given the increased demand and market size for aesthetics for men that remains untapped, there is opportunity for future research to elucidate the potential for this wavelength as a safe and effective treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data is available upon request.

References

  1. Austin E, Geisler AN, Nguyen J et al (2021) Visible light. Part I: properties and cutaneous effects of visible light. J Am Acad Dermatol 84(5):1219–1231. https://doi.org/10.1016/j.jaad.2021.02.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim WS, Calderhead RG (2011) Is light-emitting diode phototherapy (LED-LLLT) really effective? Laser Ther 20(3):205–215. https://doi.org/10.5978/islsm.20.205

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fabi S, Alexiades M, Chatrath V et al (2022) Facial aesthetic priorities and concerns: a physician and patient perception global survey. Aesthet Surg J 42(4):218–229. https://doi.org/10.1093/asj/sjab358

    Article  Google Scholar 

  4. American Society of Plastic Surgeons National Clearinghouse of Plastic Surgery Procedural Statistics (2020) Plastic surgery statistics report. https://www.plasticsurgery.org/documents/News/Statistics/2020/plastic-surgery-statistics-full-report-2020.pdf. Accessed 27 June 2022

  5. Grand View Research. Aesthetic medicine market size, share and trends analysis report by procedure type (invasive procedures, non-invasive procedures), by region (North America, Europe, Asia Pacific, Latin America, Middle East and Africa), and segment forecasts, 2021–2028. https://www.grandviewresearch.com/industry-analysis/medical-aesthetics-market. Accessed 27 June 2022

  6. Cencic B, Lukac M, Marincek M, Vizintin Z (2010) High fluence, high beam quality Q-switched Nd: YAG laser with optoflex delivery system for treating benign pigmented lesions and tattoos. Laser and Health. 1:9–18

    Google Scholar 

  7. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40(2):516–533. https://doi.org/10.1007/s10439-011-0454-7

    Article  PubMed  Google Scholar 

  8. Wong-Riley MT, Liang HL, Eells JT et al (2005) Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem 280(6):4761–4771. https://doi.org/10.1074/jbc.M409650200

    Article  CAS  PubMed  Google Scholar 

  9. Hamblin MR (2016) Shining light on the head: photobiomodulation for brain disorders. BBA Clin 6:113–124. https://doi.org/10.1016/j.bbacli.2016.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hamblin MR, Demidova T (2006) N. Mechanisms of low level light therapy. In: Hamblin MR, Waynant RW, Anders J (eds) SPIE Proceedings. SPIE, UK

    Google Scholar 

  11. Lee SY, Seong IW, Kim JS et al (2011) Enhancement of cutaneous immune response to bacterial infection after low-level light therapy with 1072 nm infrared light: a preliminary study. J Photochem Photobiol B 105(3):175–182. https://doi.org/10.1016/j.jphotobiol.2011.08.009

    Article  CAS  PubMed  Google Scholar 

  12. Bradford A, Barlow A, Chazot PL (2005) Probing the differential effects of infrared light sources IR1072 and IR880 on human lymphocytes: evidence of selective cytoprotection by IR1072. J Photochem Photobiol B 81(1):9–14. https://doi.org/10.1016/j.jphotobiol.2005.05.005

    Article  CAS  PubMed  Google Scholar 

  13. Geisler AN, Austin E, Nguyen J, Hamzavi I, Jagdeo J, Lim HW (2021) Visible light. Part II: photoprotection against visible and ultraviolet light. J Am Acad Dermatol 84(5):1233–1244. https://doi.org/10.1016/j.jaad.2020.11.074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lukac M, Zabkar J, Gorjan M, Grad L, Vizintin Z (2010) Beyond customary paradigm: FRAC3® Nd:YAG laser hair removal. No 1:35–46

    Google Scholar 

  15. Grad L, Sult T, Sult R (2007) Scientific evaluation of the VSP Nd:YAG laser for hair removal. In: Compendium, Journal of Laser and Health Academy, The Laser and Health Academy www.laserandhealth.com 2009(2):36–44.

  16. Marshal RP, Vlkova K (2020) Spectral dependence of laser light on light tissue interactions and its influence on laser therapy: an experimental study. Insights Biomed 5(1):1–4

    Google Scholar 

  17. Dompe C, Moncrieff L, Matys J et al (2020) Photobiomodulation-underlying mechanism and clinical applications. J Clin Med. https://doi.org/10.3390/jcm9061724

    Article  PubMed  PubMed Central  Google Scholar 

  18. Penberthy WT, Vorwaller CE (2021) Utilization of the 1064 nm wavelength in photobiomodulation: a systematic review and meta-analysis. J Lasers Med Sci 12:e86. https://doi.org/10.34172/jlms.2021.86

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bolognia JL, Jorizzo JL, Rapini RP, Callen JP, Horn TD, Mancini AJ, Salasche SJ, Schaffer JV, Schwarz T, Stingl G, Stone MS (2008) Dermatology, 2nd edn. Mosby Elsevier

    Google Scholar 

  20. Avci P, Gupta A, Sadasivam M et al (2013) Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg 32(1):41–52

    PubMed  PubMed Central  Google Scholar 

  21. Bolton LL (2020) Wound phototherapy. Wounds 32(9):262–264

    PubMed  Google Scholar 

  22. Sharma AS, Srishti S, Periyasamy V, Pramanik M (2019) Photoacoustic imaging depth comparison at 532-, 800-, and 1064- nm wavelengths: Monte Carlo simulation and experimental validation. J Biomed Optics 24(12):121904

    Article  CAS  Google Scholar 

  23. Moro C, Massri NE, Torres N et al (2014) Photobiomodulation inside the brain: a novel method of applying near-infrared light intracranially and its impact on dopaminergic cell survival in MPTP-treated mice. J Neurosurg 120(3):670–683. https://doi.org/10.3171/2013.9.Jns13423

    Article  PubMed  Google Scholar 

  24. Reinhart F, Massri NE, Torres N et al (2017) The behavioural and neuroprotective outcomes when 670nm and 810nm near infrared light are applied together in MPTP-treated mice. Neurosci Res 117:42–47. https://doi.org/10.1016/j.neures.2016.11.006

    Article  CAS  PubMed  Google Scholar 

  25. Pitzschke A, Lovisa B, Seydoux O et al (2015) Optical properties of rabbit brain in the red and near-infrared: changes observed under in vivo, postmortem, frozen, and formalin-fixated conditions. J Biomed Opt 20(2):25006. https://doi.org/10.1117/1.Jbo.20.2.025006

    Article  PubMed  Google Scholar 

  26. Salehpour F, Cassano P, Rouhi N et al (2019) Penetration profiles of visible and near-infrared lasers and light-emitting diode light through the head tissues in animal and human species: a review of literature. Photobiomodul Photomed Laser Surg 37(10):581–595. https://doi.org/10.1089/photob.2019.4676

    Article  PubMed  Google Scholar 

  27. Jagdeo JR, Adams LE, Brody NI, Siegel DM (2012) Transcranial red and near infrared light transmission in a cadaveric model. PLoS One 7(10):e47460. https://doi.org/10.1371/journal.pone.0047460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alexis AF (2013) Lasers and light-based therapies in ethnic skin: treatment options and recommendations for Fitzpatrick skin types V and VI. Br J Dermatol 169(Suppl 3):91–97. https://doi.org/10.1111/bjd.12526

    Article  PubMed  Google Scholar 

  29. Huang YY, Sharma SK, Carroll J, Hamblin MR (2011) Biphasic dose response in low level light therapy - an update. Dose Response 9(4):602–618. https://doi.org/10.2203/dose-response.11-009.Hamblin

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Opel DR, Hagstrom E, Pace AK et al (2015) Light-emitting diodes: a brief review and clinical experience. J Clin Aesthet Dermatol 8(6):36–44

    PubMed  PubMed Central  Google Scholar 

  31. Stirling RJ, Haslam JD (2007) A self-reported clinical trial investigates the efficacy of 1072 nm light as an anti-ageing agent. J Cosmet Laser Ther 9(4):226–230. https://doi.org/10.1080/14764170701400085

    Article  PubMed  Google Scholar 

  32. Dougal G, Kelly P (2001) A pilot study of treatment of herpes labialis with 1072 nm narrow waveband light. Clin Exp Dermatol 26(2):149–154. https://doi.org/10.1046/j.1365-2230.2001.00783.x

    Article  CAS  PubMed  Google Scholar 

  33. Dougal G, Lee SY (2013) Evaluation of the efficacy of low-level light therapy using 1072 nm infrared light for the treatment of herpes simplex labialis. Clin Exp Dermatol 38(7):713–718. https://doi.org/10.1111/ced.12069

    Article  CAS  PubMed  Google Scholar 

  34. Hargate G (2006) A randomised double-blind study comparing the effect of 1072-nm light against placebo for the treatment of herpes labialis. Clin Exp Dermatol 31(5):638–641. https://doi.org/10.1111/j.1365-2230.2006.02191.x

    Article  CAS  PubMed  Google Scholar 

  35. Albornoz CA, Nichols SE, Wang JV, Saedi N, Munavalli GS (2022) Optimizing skin tightening in aesthetics in men. Clin Dermatol 40(3):244–248. https://doi.org/10.1016/j.clindermatol.2021.11.005

    Article  PubMed  Google Scholar 

  36. Kono T, Yamada J (2019) In vivo measurement of optical properties of human skin for 450–800 nm and 950–1600 nm wavelengths. Int J Thermophys 40:51

    Article  Google Scholar 

  37. Jagdeo J, Keaney T, Narurkar V, Kolodziejczyk J, Gallagher CJ (2016) Facial treatment preferences among aesthetically oriented men. Dermatol Surg 42(10):1155–1163. https://doi.org/10.1097/dss.0000000000000876

    Article  CAS  PubMed  Google Scholar 

  38. Infante VHP, Bagatin E, Maia CP (2021) Skin photoaging in young men: a clinical study by skin imaging techniques. Int J Cosmet Sci 43(3):341–351. https://doi.org/10.1111/ics.12701

    Article  CAS  PubMed  Google Scholar 

  39. Souza C, Maia Campos P, Schanzer S et al (2017) Radical-scavenging activity of a sunscreen enriched by antioxidants providing protection in the whole solar spectral range. Skin Pharmacol Physiol 30(2):81–89. https://doi.org/10.1159/000458158

    Article  CAS  PubMed  Google Scholar 

  40. Cadet J, Douki T, Ravanat JL (2015) Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Photochem Photobiol 91(1):140–155. https://doi.org/10.1111/php.12368

    Article  CAS  PubMed  Google Scholar 

  41. Agbai O, Hamzavi I, Jagdeo J (2017) Laser treatments for postinflammatory hyperpigmentation: a systematic review. JAMA Dermatol 153(2):199–206. https://doi.org/10.1001/jamadermatol.2016.4399

    Article  PubMed  Google Scholar 

  42. Jagdeo J (2015) Commentary on evolution of facial aesthetic treatment over five or more years. Dermatol Surg: Off Publ Am Soc Dermatol Surg 41(7):848–849

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.M. wrote the main manuscript text. E.A. and J.J. edited the manuscript. All authors reviewed the manuscript."

Corresponding author

Correspondence to Jared Jagdeo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mineroff, J., Austin, E. & Jagdeo, J. Cutaneous effects of photobiomodulation with 1072 nm light. Arch Dermatol Res 315, 1481–1486 (2023). https://doi.org/10.1007/s00403-022-02480-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-022-02480-7

Keywords

Navigation