Skip to main content

Advertisement

Log in

Liposomal stem cell extract formulation from Coffea canephora shows outstanding anti-inflammatory activity, increased tissue repair, neocollagenesis and neoangiogenesis

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Coffea canephora plant stem cells can have bioactive compounds with tissue repairing and anti-inflammatory action. This study aimed to develop a liposomal stem cell extract formulation obtained from the leaves of C. canephora (LSCECC) and to investigate its capacity to contribute to the dynamic mechanisms of tissue repair. The liposome cream was developed and characterized through the dynamic light scattering technique, atomic force microscopy, and transmission electron microscopy. The excisional full-thickness skin wound model was used and daily topically treated with the LSCECC formulation or vehicle control. On days 2, 7, 14, and 21 after wounding, five rats from each group were euthanized and the rates of wound closure and re-epithelialization were evaluated using biochemical and histological tests. LSCECC resulted in faster re-epithelialization exhibiting a significant reduction in wound area of 36.4, 42.4, and 87.5% after 7, 10, and 14 days, respectively, when compared to vehicle control. LSCECC treated wounds exhibited an increase in granular tissue and a proper inflammatory response mediated by the reduction of pro-inflammatory cytokines like TNF-α and IL-6 and an increase of IL-10. Furthermore, wounds treated with LSCECC showed an increase in the deposition and organization of collagen fibers at the wound site and improved scar tissue quality due to the increase in transforming growth factor-beta and vascular endothelial growth factor. Our data showed that LSCECC improves wound healing, the formation of extracellular matrix, modulates inflammatory response, and promotes neovascularization being consider a promising bioactive extract to promote and support healthy skin.

Graphical abstract

The graphical presents the action of LSCECC in all four phases of wound healing and tissue repair. The LSCECC can reduce the inflammatory infiltrate in the inflammatory phase by decreasing the pro-inflammatory cytokines like IL-6 and TNF-α, in addition to maintaining this modulation through lesser activation and recruitment of macrophages. The LSCECC can also increase the release of IL-10, an anti-inflammatory cytokine, decreasing local edema. The increase in VEGF provides neovascularization and the supply of nutrients to newly repaired tissue. Finally, signaling via TGF-β increases the production and organization of collagen fibers in the remodeling phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Buranasudja V, Rani D, Malla A et al (2021) Insights into antioxidant activities and anti-skin-aging potential of callus extract from Centella asiatica (L.). Sci Rep 11:1–16. https://doi.org/10.1038/s41598-021-92958-7

    Article  CAS  Google Scholar 

  2. Priftis A, Stagos D, Konstantinopoulos K et al (2015) Comparison of antioxidant activity between green and roasted coffee beans using molecular methods. Mol Med Rep 12:7293–7302. https://doi.org/10.3892/mmr.2015.4377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bessada SMF, Alves RC, Costa ASG et al (2018) Coffea canephora silverskin from different geographical origins: a comparative study. Sci Total Environ 645:1021–1028. https://doi.org/10.1016/j.scitotenv.2018.07.201

    Article  CAS  PubMed  Google Scholar 

  4. Kasote DM, Katyare SS, Hegde MV, Bae H (2015) Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci 11:982–991. https://doi.org/10.7150/ijbs.12096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morus M, Baran M, Rost-Roszkowska M, Skotnicka-Graca U (2014) Plant stem cells as innovation in cosmetics. Acta Pol Pharm 71:701–707

    PubMed  Google Scholar 

  6. Das A, Konyak PM, Das A et al (2019) Physicochemical characterization of dual action liposomal formulations: anticancer and antimicrobial. Heliyon 5:e02372. https://doi.org/10.1016/j.heliyon.2019.e02372

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ruozi B, Belletti D, Tombesi A et al (2011) AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study. Int J Nanomedicine 6:557–563. https://doi.org/10.2147/ijn.s14615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Patil YP, Jadhav S (2014) Novel methods for liposome preparation. Chem Phys Lipids 177:8–18. https://doi.org/10.1016/j.chemphyslip.2013.10.011

    Article  CAS  PubMed  Google Scholar 

  9. Maver T, Maver U, Stana Kleinschek K et al (2015) A review of herbal medicines in wound healing. Int J Dermatol 54:740–751. https://doi.org/10.1111/ijd.12766

    Article  PubMed  Google Scholar 

  10. Alam P, Ansari MJ, Anwer MK et al (2017) Wound healing effects of nanoemulsion containing clove essential oil. Artif Cells Nanomed Biotechnol 45:591–597. https://doi.org/10.3109/21691401.2016.1163716

    Article  CAS  PubMed  Google Scholar 

  11. Napavichayanun S, Aramwit P (2017) Effect of animal products and extracts on wound healing promotion in topical applications: a review. J Biomater Sci Polym Ed 28:703–729. https://doi.org/10.1080/09205063.2017.1301772

    Article  CAS  PubMed  Google Scholar 

  12. Fullerton JN, Gilroy DW (2016) Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov 15:551–567. https://doi.org/10.1038/nrd.2016.39

    Article  CAS  PubMed  Google Scholar 

  13. Cerveró-Ferragut S, López-Riquelme N, Martín-Tomás E et al (2017) Quantitative analysis of blood cells and inflammatory factors in wounds. J Wound Care 26:121–125. https://doi.org/10.12968/jowc.2017.26.3.121

    Article  PubMed  Google Scholar 

  14. Li Z, Wang Q, Mi W et al (2017) Effects of negative-pressure wound therapy combined with microplasma on treating wounds of ulcer and the expression of heat shock protein 90. Exp Ther Med. https://doi.org/10.3892/etm.2017.4266

    Article  PubMed  PubMed Central  Google Scholar 

  15. Serhan CN, Chiang N, Dalli J (2015) The resolution code of acute inflammation: novel pro-resolving lipid mediators in resolution. Semin Immunol 27:200–215. https://doi.org/10.1016/j.smim.2015.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Agyare C, Boakye YD, Bekoe EO et al (2016) Review: African medicinal plants with wound healing properties. J Ethnopharmacol 177:85–100. https://doi.org/10.1016/j.jep.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  17. Okuma CH, Andrade TAM, Caetano GF et al (2015) Development of lamellar gel phase emulsion containing marigold oil (Calendula officinalis) as a potential modern wound dressing. Eur J Pharm Sci 71:62–72. https://doi.org/10.1016/j.ejps.2015.01.016

    Article  CAS  PubMed  Google Scholar 

  18. dos Santos Gramma LS, Marques FM, Vittorazzi C et al (2016) Struthanthus vulgaris ointment prevents an over expression of inflammatory response and accelerates the cutaneous wound healing. J Ethnopharmacol 190:319–327. https://doi.org/10.1016/j.jep.2016.06.050

    Article  PubMed  Google Scholar 

  19. Begashaw B, Mishra B, Tsegaw A, Shewamene Z (2017) Methanol leaves extract Hibiscus micranthus Linn exhibited antibacterial and wound healing activities. BMC Complement Altern Med 17:337. https://doi.org/10.1186/s12906-017-1841-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sanglard NA, Amaral-Silva PM, Sattler MC et al (2017) From chromosome doubling to DNA sequence changes: outcomes of an improved in vitro procedure developed for allotriploid “Híbrido de Timor” (Coffea arabica L. × Coffea canephora Pierre ex A. Froehner). Plant Cell Tissue Organ Cult 131:223–231. https://doi.org/10.1007/s11240-017-1278-4

    Article  CAS  Google Scholar 

  21. ANVISA (2011) Formulário de Fitoterápicos da Farmacopeia Brasileira. Agência Nac Vigilância Sanitária, Brasília, pp 1–126

    Google Scholar 

  22. Guidoni M, Figueira MM, Ribeiro GP et al (2019) Development and evaluation of a vegetable oil blend formulation for cutaneous wound healing. Arch Dermatol Res 311:443–452. https://doi.org/10.1007/s00403-019-01919-8

    Article  CAS  PubMed  Google Scholar 

  23. Caetano GF, Fronza M, Leite MN et al (2016) Comparison of collagen content in skin wounds evaluated by biochemical assay and by computer-aided histomorphometric analysis. Pharm Biol 54:2555–2559. https://doi.org/10.3109/13880209.2016.1170861

    Article  CAS  PubMed  Google Scholar 

  24. Marchete R, Oliveira S, Bagne L et al (2021) Anti-inflammatory and antioxidant properties of Alternanthera brasiliana improve cutaneous wound healing in rats. Inflammopharmacology 29:1443–1458. https://doi.org/10.1007/S10787-021-00862-3

    Article  CAS  PubMed  Google Scholar 

  25. Menbari A, Bahramnejad B, Abuzaripoor M et al (2021) Establishment of callus and cell suspension cultures of Granny Smith apple fruit and antityrosinase activity of their extracts. Sci Hortic (Amst) 286:110222. https://doi.org/10.1016/j.scienta.2021.110222

    Article  CAS  Google Scholar 

  26. Vertuani S, Beghelli E, Scalambra E et al (2011) Activity and stability studies of verbascoside, a novel antioxidant, in dermo-cosmetic and pharmaceutical topical formulations. Molecules 16:7068–7080. https://doi.org/10.3390/molecules16087068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Donnez D, Jeandet P, Clément C, Courot E (2009) Bioproduction of resveratrol and stilbene derivatives by plant cells and microorganisms. Trends Biotechnol 27:706–713. https://doi.org/10.1016/j.tibtech.2009.09.005

    Article  CAS  PubMed  Google Scholar 

  28. Barbulova A, Apone F, Colucci G (2014) Plant cell cultures as source of cosmetic active ingredients. Cosmetics 1:94–104. https://doi.org/10.3390/cosmetics1020094

    Article  Google Scholar 

  29. Apone F, Tito A, Carola A et al (2010) A mixture of peptides and sugars derived from plant cell walls increases plant defense responses to stress and attenuates ageing-associated molecular changes in cultured skin cells. J Biotechnol 145:367–376. https://doi.org/10.1016/j.jbiotec.2009.11.021

    Article  CAS  PubMed  Google Scholar 

  30. Heinrich K, Heinrich U, Tronnier H (2014) Influence of different cosmetic formulations on the human skin barrier. Skin Pharmacol Physiol 27:141–147. https://doi.org/10.1159/000354919

    Article  CAS  PubMed  Google Scholar 

  31. Hamidzadeh K, Christensen SM, Dalby E et al (2017) Macrophages and the recovery from acute and chronic inflammation. Annu Rev Physiol 79:567–592. https://doi.org/10.1146/annurev-physiol-022516-034348

    Article  CAS  PubMed  Google Scholar 

  32. Ogbechie-Godec OA, Elbuluk N (2017) Melasma: an up-to-date comprehensive review. Dermatol Ther (Heidelb) 7:305–318. https://doi.org/10.1007/s13555-017-0194-1

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu T, Deng Z, Xie H et al (2020) ADAMDEC1 promotes skin inflammation in rosacea via modulating the polarization of M1 macrophages. Biochem Biophys Res Commun 521:64–71. https://doi.org/10.1016/j.bbrc.2019.10.073

    Article  CAS  PubMed  Google Scholar 

  34. Konstantinova VA, Yu Olisova O, Gladko VV, Burova EP (2019) Vitiligo – new treatment approach. Clin Cosmet Investig Dermatol 12:911–917. https://doi.org/10.2147/CCID.S229175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zirwas MJ (2019) Contact dermatitis to cosmetics. Clin Rev Allergy Immunol 56:119–128. https://doi.org/10.1007/s12016-018-8717-9

    Article  PubMed  Google Scholar 

  36. Strang H, Kaul A, Parikh U et al (2020) Role of cytokines and chemokines in wound healing. Wound healing, tissue repair, and regeneration in diabetes. Elsevier, Amsterdam, pp 197–235

    Chapter  Google Scholar 

  37. Chong DLW, Trinder S, Labelle M et al (2020) Platelet-derived transforming growth factor-β1 promotes keratinocyte proliferation in cutaneous wound healing. J Tissue Eng Regen Med 14:645–649. https://doi.org/10.1002/TERM.3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hori K, Ding J, Marcoux Y et al (2012) Impaired cutaneous wound healing in transforming growth factor-β inducible early gene1 knockout mice. Wound Repair Regen 20:166–177. https://doi.org/10.1111/J.1524-475X.2012.00773.X

    Article  PubMed  Google Scholar 

  39. Nourian Dehkordi A, Mirahmadi Babaheydari F, Chehelgerdi M, Raeisi Dehkordi S (2019) Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther 10:111. https://doi.org/10.1186/s13287-019-1212-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Johnson KE, Wilgus TA (2014) Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv Wound care 3:647–661. https://doi.org/10.1089/WOUND.2013.0517

    Article  Google Scholar 

  41. Reilly DM, Lozano J (2021) Skin collagen through the lifestages: importance for skin health and beauty. Plast Aesthet Res. https://doi.org/10.20517/2347-9264.2020.153

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural (INCAPER) for technical support and to the Fundação de Amparo à Pesquisa do Espírito Santo (FAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support.

Funding

This research was funded by Fundação de Amparo à Pesquisa e Inovação do Espírito Santo, Grant nos [2021-NBD7G-TO 431/2021, 2021-NBD7G-TO 431/2021], Programa de Desenvolvimento Científico e Tecnológico Regional–PDCTR 2019, Grant no [TO527/2020], Conselho Nacional de Desenvolvimento Científico e Tecnológico, Grant no [312015/2021-6].

Author information

Authors and Affiliations

Authors

Contributions

MG, MF and VPMA designed the study, interpreted the data and wrote the manuscript. MG, ADSJ, WCS and FCM performed the laboratory work, TMCP, MSCG and MF analyzed the data and revised the manuscript . All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Marcio Fronza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This work follows ethical standards and all experiments involving the use of animals were conducted by the National Council for the Control of Animal Experimentation and were approved by the Ethical Committee, Bioethics and Animal Welfare of the Universidade Vila Velha (UVV) (ID n.575-2020).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guidoni, M., de Sousa Júnior, A.D., Aragão, V.P.M. et al. Liposomal stem cell extract formulation from Coffea canephora shows outstanding anti-inflammatory activity, increased tissue repair, neocollagenesis and neoangiogenesis. Arch Dermatol Res 315, 491–503 (2023). https://doi.org/10.1007/s00403-022-02388-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-022-02388-2

Keywords

Navigation