Skip to main content

Advertisement

Log in

Comparative study of doxycycline, sancycline, and 4-dedimethylamino sancycline (CMT-3) on epidermal melanogenesis

  • Concise Communications
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Melanogenesis is regulated by melanocytes, which synthesize the pigment melanin inside melanosomes; these melanosomes are exported through dendritic extensions to adjacent keratinocytes and result in skin coloration. Chemically modified tetracyclines (CMTs) are nonantimicrobial tetracyclines that retain the capacity to inhibit matrix metalloproteinases (MMPs) and have shown several biological benefits; in particular, CMT-3 [(4-dedimethylamino sancycline (SAN)] has emerged as a candidate for therapeutic benefits in our previous studies. However, to date, studies of the effects of CMT-3 or SAN on melanogenesis are lacking. We have previously reported the anti-melanogenic activity of CMT-308 (the 9-amino derivative of CMT-3). Herein, we have compared the three tetracycline analogs, doxycycline (DOX), SAN, and CMT-3, for their effects on melanogenesis using B16F10 mouse melanoma cells and have validated results in primary human melanocytes (HEMn-DP). DOX did not show any significant effects on intracellular melanin or melanosome export in DP cells while SAN was cytotoxic at high doses but without effects on melanogenesis at lower doses. However, CMT-3 showed a robust suppression of dendricity parameters (dendrite number, dendrite length, and proportion of dendritic cells) in DP cells which was associated, at least in part, with a significant reduction of intracellular tyrosinase activity. In spite of its inhibition of tyrosinase activity, CMT-3 had no significant effects on intracellular melanin levels, suggesting that it selectively targets melanosome export. Our results demonstrate a unique structure–activity relationship (SAR) for the effects of these compounds on melanogenesis and support the conclusion that removal of the 4-dimethylamino moiety confers the selective capacity to suppress melanosome export. Collectively, these results indicate that CMT-3 might be a candidate for diminishing hyperpigmentation skin disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

CMT:

Chemically modified tetracycline

SAN:

Sancycline

DOX:

Doxycycline

SAR:

Structure–activity relationship

KA:

Kojic acid

UV:

Ultraviolet

α-MSH:

Alpha-melanocyte stimulating hormone

L-DOPA:

3,4-Dihydroxy-L-phenylalanine

DMEM:

Dulbecco’s Modified Eagle’s Medium

HI-FBS:

Heat-inactivated fetal bovine serum

HMGS:

Human Melanocyte Growth Supplement

HEMn-DP:

Human epidermal melanocytes—darkly pigmented

BCA:

Bicinchoninic acid

NaOH:

Sodium hydroxide

TYR:

Tyrosinase

MITF:

Microphthalmia transcription factor

References

  1. Lin JY, Fisher DE (2007) Melanocyte biology and skin pigmentation. Nature 445(7130):843–850

    Article  CAS  PubMed  Google Scholar 

  2. Schiaffino MV (2010) Signaling pathways in melanosome biogenesis and pathology. Int J Biochem Cell Biol 42(7):1094–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chang T-S (2009) An updated review of tyrosinase inhibitors. Int J Mol Sci 10(6):2440–2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Solano F et al (2006) Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Res 19(6):550–571

    Article  CAS  PubMed  Google Scholar 

  5. Millington G (2006) Proopiomelanocortin (POMC): the cutaneous roles of its melanocortin products and receptors. Clin Exp Dermatol Clin Dermatol 31(3):407–412

    Article  CAS  Google Scholar 

  6. Fistarol SK, Itin PH (2010) Disorders of pigmentation. JDDG Journal der Deutschen Dermatologischen Gesellschaft 8(3):187–202

    PubMed  Google Scholar 

  7. Callender VD et al (2011) Postinflammatory hyperpigmentation. Am J Clin Dermatol 12(2):87–99

    Article  PubMed  Google Scholar 

  8. Maymone MB et al (2018) Correlating the dermatology life quality index and skin discoloration impact evaluation questionnaire tools in disorders of hyperpigmentation. J Dermatol 45(3):361–362

    Article  PubMed  Google Scholar 

  9. Wu X, Hammer JA (2014) Melanosome transfer: it is best to give and receive. Curr Opin Cell Biol 29:1–7

    Article  PubMed  Google Scholar 

  10. Ando H et al (2012) Melanosomes are transferred from melanocytes to keratinocytes through the processes of packaging, release, uptake, and dispersion. J Investig Dermatol 132(4):1222–1229

    Article  CAS  PubMed  Google Scholar 

  11. Sawhney A (2019) Chemically modified tetracyclines. Periodontology and dental implantology. IntechOpen, London, p 89

    Google Scholar 

  12. Golub LM et al (1987) A non-antibacterial chemically-modified tetracycline inhibits mammalian collagenase activity. J Dent Res 66(8):1310–1314

    Article  CAS  PubMed  Google Scholar 

  13. Liu Y et al (2002) A chemically modified tetracycline (CMT-3) is a new antifungal agent. Antimicrob Agents Chemother 46(5):1447–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gu Y et al (2011) Chemically modified tetracycline-3 (CMT-3): a novel inhibitor of the serine proteinase, elastase. Pharmacol Res 64(6):595–601

    Article  CAS  PubMed  Google Scholar 

  15. Gu Y et al (2005) Inhibition of breast cancer cell extracellular matrix degradative activity by chemically modified tetracyclines. Ann Med 37(6):450–460

    Article  CAS  PubMed  Google Scholar 

  16. Islam MM et al (2003) A nonantibiotic chemically modified tetracycline (CMT-3) inhibits intimal thickening. Am J Pathol 163(4):1557–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roy SK et al (2012) Chemically modified tetracycline 3 prevents acute respiratory distress syndrome in a porcine model of sepsis + ischemia/reperfusion-induced lung injury. Shock 37(4):424–432

    Article  CAS  PubMed  Google Scholar 

  18. Lee HM et al (2001) CMT-3, a non-antimicrobial tetracycline (TC), inhibits MT1-MMP activity: relevance to cancer. Curr Med Chem 8(3):257–260

    Article  CAS  PubMed  Google Scholar 

  19. Golub LM et al (2016) Non-antibacterial tetracycline formulations: host-modulators in the treatment of periodontitis and relevant systemic diseases. Int Dent J 66(3):127–135

    Article  PubMed  Google Scholar 

  20. Dezube BJ et al (2006) Randomized phase II trial of matrix metalloproteinase inhibitor COL-3 in AIDS-related Kaposi’s sarcoma: an AIDS malignancy consortium study. J Clin Oncol 24(9):1389–1394

    Article  CAS  PubMed  Google Scholar 

  21. Ryan M et al. (2008) Effects of short-term COL-3 on local biomarkers of periodontitis. J Dent Res 87(special issue A) abstract # 0040

  22. Goenka S, Simon SR (2020) CMT-308, a Nonantimicrobial chemically-modified tetracycline, exhibits anti-melanogenic activity by suppression of melanosome export. Biomedicines 8(10):411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goenka S, Simon SR (2020) Inhibitory effects of the bioactive thermorubin isolated from the fungus Thermoactinomyces Antibioticus on Melanogenesis. Cosmetics 7(3):61

    Article  CAS  Google Scholar 

  24. Keijmel SP et al (2015) Cutaneous hyperpigmentation induced by doxycycline: a case series. Neth J Med 73(1):37–40

    CAS  PubMed  Google Scholar 

  25. Pichardo R, Yeatts R, Sangueza O (2006) Doxycycline-inducted cutaneous hyperpigmentation. Am J Dermatopathol 28(3):235

    Article  Google Scholar 

  26. Adisen E, Gurer MA, Erdem O (2006) Tetracycline/doxycycline-induced cutaneous depressed pigmentation. Int J Dermatol 45(10):1245–1247

    Article  PubMed  Google Scholar 

  27. Chan YY, Kim KH, Cheah SH (2011) Inhibitory effects of Sargassum polycystum on tyrosinase activity and melanin formation in B16F10 murine melanoma cells. J Ethnopharmacol 137(3):1183–1188

    Article  CAS  PubMed  Google Scholar 

  28. Sim M-O et al (2017) Anti-melanogenesis and anti-oxidant of Salix pseudo-lasiogyne water extract in α-MSH-induced B16F10 melanoma cells. Food Hydrocoll 28(6):1003–1016

    CAS  Google Scholar 

  29. Chung S, Lim GJ, Lee JY (2019) Quantitative analysis of melanin content in a three-dimensional melanoma cell culture. Sci Rep 9(1):1–9

    Article  Google Scholar 

  30. Fu T et al (2019) Fargesin inhibits melanin synthesis in murine malignant and immortalized melanocytes by regulating PKA/CREB and P38/MAPK signaling pathways. J Dermatol Sci 94(1):213–219

    Article  CAS  PubMed  Google Scholar 

  31. Hunt G, Todd C, Thody AJ (1996) Unresponsiveness of human epidermal melanocytes to melanocyte-stimulating hormone and its association with red hair. Mol Cell Endocrinol 116(2):131–136

    Article  CAS  PubMed  Google Scholar 

  32. Qin L et al (2014) Dual effects of alpha-arbutin on monophenolase and diphenolase activities of mushroom tyrosinase. PLoS ONE 9(10):e109398

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chen K et al (2017) A novel inhibitor against mushroom tyrosinase with a double action mode and its application in controlling the browning of potato. Food Bioprocess Technol 10(12):2146–2155

    Article  CAS  Google Scholar 

  34. Tamura S, Nitoda T, Kubo I (2007) Effects of salicylic acid on mushroom tyrosinase and B16 melanoma cells. Zeitschrift für Naturforschung C 62(3–4):227–233

    Article  CAS  Google Scholar 

  35. Jian Q et al (2014) MicroRNA 340 is involved in UVB-induced dendrite formation through the regulation of RhoA expression in melanocytes. Mol Cell Biol 34(18):3407–3420

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rok J et al (2015) Modulation of melanogenesis and antioxidant status of melanocytes in response to phototoxic action of doxycycline. Photochem Photobiol 91(6):1429–1434

    Article  CAS  PubMed  Google Scholar 

  37. Lokeshwar BL, Escatel E, Zhu B (2001) Cytotoxic activity and inhibition of tumor cell invasion by derivatives of a chemically modified tetracycline CMT-3 (COL-3). Curr Med Chem 8(3):271–279

    Article  CAS  PubMed  Google Scholar 

  38. Rok J et al (2020) Cytotoxic and proapoptotic effect of doxycycline–an in vitro study on the human skin melanoma cells. Toxicol In Vitro 65:104790

    Article  CAS  PubMed  Google Scholar 

  39. Rzepka Z et al (2021) Molecular and biochemical basis of minocycline-induced hyperpigmentation—the study on normal human melanocytes exposed to UVA and UVB radiation. Int J Mol Sci 22(7):3755

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fiscus V, Hankinson A, Alweis R (2014) Minocycline-induced hyperpigmentation. J Commun Hosp Intern Med Perspect 4(3):24063

    Article  Google Scholar 

  41. Yamamoto N, Dejima A, Hasatani K (2021) Minocycline-induced hyperpigmentation in a patient with prurigo pigmentosa. BMJ Case Rep 14(6):e244365

    Article  PubMed  Google Scholar 

  42. Scott G (2002) Rac and rho: the story behind melanocyte dendrite formation. Pigment Cell Res 15(5):322–330

    Article  CAS  PubMed  Google Scholar 

  43. Banning TP, Heard CM (2002) Binding of doxycycline to keratin, melanin and human epidermal tissue. Int J Pharm 235(1–2):219–227

    Article  CAS  PubMed  Google Scholar 

  44. Rok J et al (2019) Chlortetracycline and melanin biopolymer–The risk of accumulation and implications for phototoxicity: an in vitro study on normal human melanocytes. Chem Biol Interact 303:27–34

    Article  CAS  PubMed  Google Scholar 

  45. Yang X et al (2013) Preparation and characterization of 4-dedimethylamino sancycline (CMT-3) loaded nanostructured lipid carrier (CMT-3/NLC) formulations. Int J Pharm 450(1–2):225–234

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study did not receive any funding in the public, commercial, or not-for-profit sectors. We would like to acknowledge Dr. Lorne Golub (Stony Brook University) for contributions to the development of CMTs.

Author information

Authors and Affiliations

Authors

Contributions

SG conceptualized the research idea, designed, and conducted all experiments, wrote and critically revised the manuscript; SRS provided financial support. Both authors approved the final draft of the manuscript.

Corresponding author

Correspondence to Shilpi Goenka.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

This article does not contain any studies involving animals or human participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2891 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goenka, S., Simon, S.R. Comparative study of doxycycline, sancycline, and 4-dedimethylamino sancycline (CMT-3) on epidermal melanogenesis. Arch Dermatol Res 315, 249–257 (2023). https://doi.org/10.1007/s00403-021-02297-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-021-02297-w

Keywords

Navigation