Skip to main content

Advertisement

Log in

Adiponectin negatively regulates pigmentation, Wnt/β-catenin and HGF/c-Met signalling within human scalp hair follicles ex vivo

  • Concise Communications
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Adiponectin reportedly stimulates proliferation and elongation of human scalp hair follicles (HFs) ex vivo. In the current study, we investigated how adiponectin oligomers produced by perifollicular dermal white adipose tissue (dWAT), a potent source of adiponectin isoforms, influence human HF proliferation and pigmentation. To do so, we treated microdissected, organ-cultured HFs in the presence or absence of dWAT with a recombinant human adiponectin oligomer mix, or inhibited dWAT-derived adiponectin using a neutralizing antibody. Multiplex qPCR (Fluidigm) revealed that adiponectin oligomers downregulated pigmentation genes KITLG, PMEL and TYRP1 and Wnt genes AXIN2, LEF1 and WNT10B. In situ hybridization showed that adiponectin downregulated AXIN2 and LEF1, and up-regulated DKK1 within the dermal papilla (DP), a highly unusual transcriptional profile for a putative hair growth-promoting agent. Adiponectin oligomers also downregulated protein expression of the HGF receptor c-Met within the matrix and DP. However, adiponectin did not alter hair matrix keratinocyte proliferation within 48 h ex vivo, irrespective of the presence/absence of dWAT; HF pigmentation (Masson-Fontana histochemistry, tyrosinase activity) was also unchanged. In contrast, neutralizing adiponectin isoforms within HF + dWAT increased proliferation, melanin content and tyrosinase activity but resulted in fewer melanocytes and melanocytic dendrites, as assessed by gp100 immunostaining. These seemingly contradictory effects suggest that adiponectin exerts complex effects upon human HF biology, likely in parallel with the pro-pigmentation effects of dWAT- and DP-derived HGF. Our data suggest that dWAT-derived ratios of adiponectin isoforms and the cleaved, globular version of adiponectin may in fact determine how adiponectin impacts upon follicular pigmentation and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Geyfman M, Plikus MV, Treffeisen E et al (2015) Resting no more: re-defining telogen, the maintenance stage of the hair growth cycle. Biol Rev 90:1179–1196. https://doi.org/10.1111/brv.12151

    Article  PubMed  Google Scholar 

  2. Plikus MV, Mayer JA, de la Cruz D et al (2008) Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 451:340–344. https://doi.org/10.1038/nature06457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Festa E, Fretz J, Berry R et al (2011) Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell 146:761–771. https://doi.org/10.1016/j.cell.2011.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sumikawa Y, Inui S, Nakajima T, Itami S (2014) Hair cycle control by leptin as a new anagen inducer. Exp Dermatol 23:27–32. https://doi.org/10.1111/exd.12286

    Article  CAS  PubMed  Google Scholar 

  5. Zhang B, Tsai PC, Gonzalez-Celeiro M et al (2016) Hair follicles’ transit-amplifying cells govern concurrent dermal adipocyte production through sonic hedgehog. Genes Dev 30:2325–2338. https://doi.org/10.1101/gad.285429.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang C-C, Sheu H-M, Chung P-L et al (2015) Leptin of dermal adipose tissue is differentially expressed during the hair cycle and contributes to adipocyte-mediated growth inhibition of anagen-phase vibrissa hair. Exp Dermatol 24:57–60. https://doi.org/10.1111/exd.12566

    Article  CAS  PubMed  Google Scholar 

  7. Plikus MV, Guerrero-Juarez CF, Ito M et al (2017) Regeneration of fat cells from myofibroblasts during wound healing. Science 355:748–752. https://doi.org/10.1126/science.aai8792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nicu C, O’Sullivan JDB, Ramos R, Timperi L, Lai T, Farjo N, Farjo B, Pople J, Bhogal R, Hardman JA, Plikus MV, ADM and PR, (2021) Dermal adipose tissue secretes HGF to promote human hair growth and pigmentation. J Invest Dermatol. https://doi.org/10.1016/j.jid.2020.12.019

    Article  PubMed  Google Scholar 

  9. Won CH, Yoo HG, Park KY et al (2012) Hair growth-promoting effects of adiponectin in vitro. J Invest Dermatol 132:2849–2851. https://doi.org/10.1038/jid.2012.217

    Article  CAS  PubMed  Google Scholar 

  10. Kadowaki T, Yamauchi T (2005) Adiponectin and adiponectin receptors. Endocr Rev 26:439–451. https://doi.org/10.1210/er.2005-0005

    Article  CAS  PubMed  Google Scholar 

  11. Chandran M, Phillips SA, Ciaraldi T, Henry RR (2003) Adiponectin: more than just another fat cell hormone? Diabetes Care 26:2442–2450. https://doi.org/10.2337/diacare.26.8.2442

    Article  CAS  PubMed  Google Scholar 

  12. Choi HM, Doss HM, Kim KS (2020) Multifaceted physiological roles of adiponectin in inflammation and diseases. Int J Mol Sci. https://doi.org/10.3390/ijms21041219

    Article  PubMed  PubMed Central  Google Scholar 

  13. Diep Nguyen T (2020) Adiponectin: role in physiology and pathophysiology. Int J Prev Med. https://doi.org/10.4103/ijpvm.ijpvm_193_20

    Article  Google Scholar 

  14. Yamashita T, Lakota K, Taniguchi T et al (2018) An orally-active adiponectin receptor agonist mitigates cutaneous fibrosis, inflammation and microvascular pathology in a murine model of systemic sclerosis. Sci Rep. https://doi.org/10.1038/s41598-018-29901-w

    Article  PubMed  PubMed Central  Google Scholar 

  15. Marangoni RG, Masui Y, Fang F et al (2017) Adiponectin is an endogenous anti-fibrotic mediator and therapeutic target. Sci Rep 7:4397. https://doi.org/10.1038/s41598-017-04162-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luo L, Li J, Liu H et al (2017) Adiponectin is involved in connective tissue growth factor-induced proliferation, migration and overproduction of the extracellular matrix in keloid fibroblasts. Int J Mol Sci. https://doi.org/10.3390/ijms18051044

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang ZV, Scherer PE (2016) Adiponectin, the past two decades. J Mol Cell Biol 8:93–100. https://doi.org/10.1093/jmcb/mjw011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Straub LG, Scherer PE (2019) Metabolic messengers: adiponectin. Nat Metab 1:334–339. https://doi.org/10.1038/s42255-019-0041-z

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cuerq C, Morineau G, Dufour-Rainfray D et al (2020) Mutltifaceted biological roles of adiponectin. Ann Biol Clin. https://doi.org/10.1684/abc.2020.1562

    Article  Google Scholar 

  20. Pham DV, Park PH (2020) Recent insights on modulation of inflammasomes by adipokines: a critical event for the pathogenesis of obesity and metabolism-associated diseases. Arch Pharm Res. https://doi.org/10.1007/s12272-020-01274-7

    Article  PubMed  Google Scholar 

  21. Szumilas K, Szumilas P, Słuczanowska-Głąbowska S et al (2020) Role of adiponectin in the pathogenesis of rheumatoid arthritis. Int J Mol Sci. https://doi.org/10.3390/ijms21218265

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kim JY, Barua S, Jeong YJ, Lee JE (2020) Adiponectin: the potential regulator and therapeutic target of obesity and Alzheimer’s disease. Int J Mol Sci. https://doi.org/10.3390/ijms21176419

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jin T, Kim MJ, Il HW et al (2016) Adiponectin corrects premature cellular senescence and normalizes antimicrobial peptide levels in senescent keratinocytes. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2016.06.119

    Article  PubMed  Google Scholar 

  24. Kim MJ, Park KY, Lee MK et al (2016) Adiponectin suppresses UVB-induced premature senescence and hBD2 overexpression in human keratinocytes. PLoS ONE. https://doi.org/10.1371/journal.pone.0161247

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lee KE, Nho YH, Yun SK et al (2020) Caviar extract and its constituent dha inhibits uvb-irradiated skin aging by inducing adiponectin production. Int J Mol Sci. https://doi.org/10.3390/ijms21093383

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fang CL, Huang LH, Tsai HY, Chang HI (2016) Dermal lipogenesis inhibits adiponectin production in human dermal fibroblasts while exogenous adiponectin administration prevents against UVA-induced dermal matrix degradation in human skin. Int J Mol Sci. https://doi.org/10.3390/ijms17071129

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang Z, Shao M, Hepler C et al (2019) Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice. J Clin Invest. https://doi.org/10.1172/jci130239

    Article  PubMed  PubMed Central  Google Scholar 

  28. Paroutoglou K, Papadavid E, Christodoulatos GS, Dalamaga M (2020) Deciphering the association between psoriasis and obesity: current evidence and treatment considerations. Curr Obes Rep. https://doi.org/10.1007/s13679-020-00380-3

    Article  PubMed  Google Scholar 

  29. Shibata S, Tada Y, Hau CS et al (2015) Adiponectin regulates psoriasiform skin inflammation by suppressing IL-17 production from γδ-T cells. Nat Commun 6:7687. https://doi.org/10.1038/ncomms8687

    Article  CAS  PubMed  Google Scholar 

  30. Jaworek AK, Szepietowski JC, Szafraniec K et al (2020) Adipokines as biomarkers of atopic dermatitis in adults. J Clin Med 9:2858. https://doi.org/10.3390/jcm9092858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jung YR, Lee J-H, Sohn K-C et al (2017) Adiponectin signaling regulates lipid production in human Sebocytes. PLoS ONE 12:e0169824. https://doi.org/10.1371/journal.pone.0169824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bang S, Won KH, Moon H-R et al (2017) Novel regulation of melanogenesis by adiponectin via the AMPK/CRTC pathway. Pigment Cell Melanoma Res 30:553–557. https://doi.org/10.1111/pcmr.12596

    Article  CAS  PubMed  Google Scholar 

  33. Kim Y, Cho JY, Oh SW et al (2018) Globular adiponectin acts as a melanogenic signal in human epidermal melanocytes. Br J Dermatol. https://doi.org/10.1111/bjd.16488

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kawai K, Kageyama A, Tsumano T et al (2008) Effects of adiponectin on growth and differentiation of human keratinocytes—implication of impaired wound healing in diabetes. Biochem Biophys Res Commun 374:269–273. https://doi.org/10.1016/j.bbrc.2008.07.045

    Article  CAS  PubMed  Google Scholar 

  35. Akazawa Y, Sayo T, Sugiyama Y et al (2011) Adiponectin resides in mouse skin and upregulates hyaluronan synthesis in dermal fibroblasts. Connect Tissue Res 52:322–328. https://doi.org/10.3109/03008207.2010.528566

    Article  CAS  PubMed  Google Scholar 

  36. Jasinski-Bergner S, Büttner M, Quandt D et al (2018) Adiponectin and its receptors are differentially expressed in human tissues and cell lines of distinct origin. Obes Facts. https://doi.org/10.1159/000481732

    Article  Google Scholar 

  37. Langan EA, Philpott MP, Kloepper JE, Paus R (2015) Human hair follicle organ culture: theory, application and perspectives. Exp Dermatol 24:903–911. https://doi.org/10.1111/exd.12836

    Article  PubMed  Google Scholar 

  38. Kloepper JE, Sugawara K, Al-Nuaimi Y et al (2010) Methods in hair research: how to objectively distinguish between anagen and catagen in human hair follicle organ culture. Exp Dermatol 19:305–312. https://doi.org/10.1111/j.1600-0625.2009.00939.x

    Article  CAS  PubMed  Google Scholar 

  39. Hawkshaw NJ, Haslam IS, Ansell DM et al (2015) Re-evaluating cyclosporine A as a hair growth-promoting agent in human scalp hair follicles. J Invest Dermatol 135:2129–2132

    Article  CAS  PubMed  Google Scholar 

  40. Purba TS, Haslam IS, Poblet E et al (2014) Human epithelial hair follicle stem cells and their progeny: current state of knowledge, the widening gap in translational research and future challenges. BioEssays 36:513–525. https://doi.org/10.1002/bies.201300166

    Article  CAS  PubMed  Google Scholar 

  41. Purba TS, Brunken L, Peake M et al (2017) Characterisation of cell cycle arrest and terminal differentiation in a maximally proliferative human epithelial tissue: lessons from the human hair follicle matrix. Eur J Cell Biol 96:632–641. https://doi.org/10.1016/j.ejcb.2017.03.011

    Article  CAS  PubMed  Google Scholar 

  42. Hardman JA, Tobin DJ, Haslam IS et al (2015) The peripheral clock regulates human pigmentation. J Invest Dermatol 135:1053–1064. https://doi.org/10.1038/JID.2014.442

    Article  CAS  PubMed  Google Scholar 

  43. Gáspár E, Nguyen-Thi KT, Hardenbicker C et al (2011) Thyrotropin-releasing hormone selectively stimulates human hair follicle pigmentation. J Invest Dermatol 131:2368–2377. https://doi.org/10.1038/JID.2011.221

    Article  PubMed  Google Scholar 

  44. Samuelov L, Sprecher E, Sugawara K et al (2013) Topobiology of human pigmentation: P-Cadherin selectively stimulates hair follicle melanogenesis. J Invest Dermatol 133:1591–1600. https://doi.org/10.1038/jid.2013.18

    Article  CAS  PubMed  Google Scholar 

  45. Kos L, Aronzon A, Takayama H et al (1999) Hepatocyte growth factor/scatter factor-MET signaling in neural crest-derived melanocyte development. Pigment cell Res 12:13–21

    Article  CAS  PubMed  Google Scholar 

  46. Yamaguchi Y, Hearing VJ (2009) Physiological factors that regulate skin pigmentation. BioFactors 35:193–199. https://doi.org/10.1002/biof.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wolnicka-Glubisz A, Pecio A, Podkowa D et al (2013) HGF/SF increases number of skin melanocytes but does not alter quality or quantity of follicular melanogenesis. PLoS ONE. https://doi.org/10.1371/journal.pone.0074883

    Article  PubMed  PubMed Central  Google Scholar 

  48. Czyz M (2018) HGF/c-MET signaling in melanocytes and melanoma. Int J Mol Sci 19:3844. https://doi.org/10.3390/ijms19123844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lindner G, Menrad A, Gherardi E et al (2000) Involvement of hepatocyte growth factor/scatter factor and met receptor signaling in hair follicle morphogenesis and cycling. FASEB J 14:319–332

    Article  CAS  PubMed  Google Scholar 

  50. Hawkshaw NJ, Hardman JA, Haslam IS et al (2018) Identifying novel strategies for treating human hair loss disorders: Cyclosporine A suppresses the Wnt inhibitor, SFRP1, in the dermal papilla of human scalp hair follicles. PLOS Biol 16:e2003705. https://doi.org/10.1371/journal.pbio.2003705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hawkshaw NJ, Hardman JA, Alam M et al (2019) Deciphering the molecular morphology of the human hair cycle: Wnt signalling during the telogen-anagen transformation. Br J Dermatol. https://doi.org/10.1111/bjd.18356

    Article  PubMed  Google Scholar 

  52. O’Sullivan JDB, Nicu C, Picard M et al (2020) The biology of human hair greying. Biol Rev. https://doi.org/10.1111/brv.12648

    Article  PubMed  Google Scholar 

  53. Reinke L, Lam AP, Flozak AS et al (2016) Adiponectin inhibits Wnt co-receptor, Lrp6, phosphorylation and β-catenin signaling. Biochem Biophys Res Commun 470:606–612. https://doi.org/10.1016/J.BBRC.2016.01.097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ohman-Hanson RA, Cree-Green M, Kelsey MM et al (2016) Ethnic and sex differences in adiponectin: from childhood to adulthood. J Clin Endocrinol Metab 101:4808–4815. https://doi.org/10.1210/jc.2016-1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Martin M, Palaniappan LP, Kwan AC et al (2008) Ethnic differences in the relationship between adiponectin and insulin sensitivity in South Asian and Caucasian women. Diabetes Care 31:798–801. https://doi.org/10.2337/dc07-1781

    Article  CAS  PubMed  Google Scholar 

  56. Mente A, Razak F, Blankenberg S et al (2010) Ethnic variation in adiponectin and leptin levels and their association with adiposity and insulin resistance. Diabetes Care 33:1629–1634. https://doi.org/10.2337/dc09-1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bush NC, Darnell BE, Oster RA et al (2005) Adiponectin is lower among African Americans and is independently related to insulin sensitivity in children and adolescents. Diabetes 54:2772–2778. https://doi.org/10.2337/diabetes.54.9.2772

    Article  CAS  PubMed  Google Scholar 

  58. Halaban R, Rubin JS, Funasaka Y et al (1992) Met and hepatocyte growth factor/scatter factor signal transduction in normal melanocytes and melanoma cells. Oncogene 7:2195–2206

    CAS  PubMed  Google Scholar 

  59. Tobin DJ (2018) Early evidence for opposing effects of full versus fragmented adiponectin on melanogenesis in human epidermal melanocytes. Br J Dermatol 179:561–562. https://doi.org/10.1111/bjd.16909

    Article  CAS  PubMed  Google Scholar 

  60. Hardman JA, Muneeb F, Pople J et al (2019) Human perifollicular macrophages undergo apoptosis, express Wnt ligands and switch their polarisation during catagen. J Invest Dermatol. https://doi.org/10.1016/J.JID.2019.04.026

    Article  PubMed  Google Scholar 

  61. Muneeb F, Hardman JA, Paus R (2019) Hair growth control by innate immunocytes: perifollicular macrophages revisited. Exp Dermatol 28:425–431. https://doi.org/10.1111/exd.13922

    Article  PubMed  Google Scholar 

  62. Addabbo F, Nacci C, De BL et al (2011) Globular adiponectin counteracts VCAM-1-mediated monocyte adhesion via AdipoR1/NF-κB/COX-2 signaling in human aortic endothelial cells. Am J Physiol Metab 301:E1143–E1154. https://doi.org/10.1152/ajpendo.00208.2011

    Article  CAS  Google Scholar 

  63. Paus R, Hofmann U, Eichmüller S, Czarnetzki BM (1994) Distribution and changing density of gamma-delta T cells in murine skin during the induced hair cycle. Br J Dermatol. https://doi.org/10.1111/j.1365-2133.1994.tb02922.x

    Article  PubMed  Google Scholar 

  64. Kloepper JE, Kawai K, Bertolini M et al (2013) Loss of γδ t cells results in hair cycling defects. J Invest Dermatol. https://doi.org/10.1038/jid.2013.17

    Article  PubMed  Google Scholar 

  65. Uchida Y, Gherardini J, Schulte-Mecklenbeck A et al (2020) Pro-inflammatory Vδ1+T-cells infiltrates are present in and around the hair bulbs of non-lesional and lesional alopecia areata hair follicles. J Dermatol Sci. https://doi.org/10.1016/j.jdermsci.2020.09.001

    Article  PubMed  Google Scholar 

  66. Uchida Y, Gherardini J, Pappelbaum K, Chéret J, Schulte-Mecklenbeck A, Gross CC, Strbo N, Gilhar A, Rossi A, Funk W, Kanekura T, Almeida L, Bertolini M, Paus R (2021) Resident human dermal γδT-cells operate as stress-sentinels: lessons from the hair follicle. J Autoimmun 124:102711

    Article  CAS  PubMed  Google Scholar 

  67. Kovács D, Lovászi M, Póliska S et al (2016) Sebocytes differentially express and secrete adipokines. Exp Dermatol. https://doi.org/10.1111/exd.12879

    Article  PubMed  Google Scholar 

  68. Gentile P, Garcovich S (2020) Systematic review of platelet-rich plasma use in androgenetic alopecia compared with Minoxidil®, Finasteride®, and adult stem cell-based therapy. Int J Mol Sci 21:2702. https://doi.org/10.3390/IJMS21082702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gentile P, Garcovich S, Scioli MG et al (2018) Mechanical and controlled PRP injections in patients affected by androgenetic alopecia. JoVE. https://doi.org/10.3791/56406

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gentile P, Garcovich S, Bielli A et al (2015) The effect of platelet-rich plasma in hair regrowth: a randomized Placebo-controlled trial. Stem Cells Transl Med 4:1317–1323. https://doi.org/10.5966/SCTM.2015-0107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gentile P, Cole JP, Cole MA et al (2017) Evaluation of not-activated and activated PRP in hair loss treatment: role of growth factor and cytokine concentrations obtained by different collection systems. Int J Mol Sci 18:408. https://doi.org/10.3390/IJMS18020408

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gentile P, Garcovich S (2020) Autologous activated platelet-rich plasma (AA-PRP) and non-activated (A-PRP) in hair growth: a retrospective, blinded, randomized evaluation in androgenetic alopecia. Expert Opin Biol Ther 20:327–337. https://doi.org/10.1080/14712598.2020.1724951

    Article  CAS  PubMed  Google Scholar 

  73. Cervelli V, Garcovich S, Bielli A et al (2014) The effect of autologous activated platelet rich plasma (AA-PRP) injection on pattern hair loss: Clinical and histomorphometric evaluation. Biomed Res Int. https://doi.org/10.1155/2014/760709

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gentile P (2019) Autologous cellular method using Micrografts of human adipose tissue derived follicle stem cells in androgenic alopecia. Int J Mol Sci 20:3446. https://doi.org/10.3390/ijms20143446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gentile P, Scioli MG, Cervelli V et al (2020) Autologous micrografts from scalp tissue: trichoscopic and long-term clinical evaluation in male and female androgenetic alopecia. Biomed Res Int. https://doi.org/10.1155/2020/7397162

    Article  PubMed  PubMed Central  Google Scholar 

  76. Gentile P, Garcovich S (2019) Advances in regenerative stem cell therapy in androgenic alopecia and hair loss: Wnt pathway, growth-factor, and mesenchymal stem cell signaling impact analysis on cell growth and hair follicle development. Cells 8:466. https://doi.org/10.3390/cells8050466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gentile P, Scioli MG, Bielli A et al (2019) Platelet-rich plasma and micrografts enriched with autologous human follicle mesenchymal stem cells improve hair re-growth in androgenetic alopecia. Biomolecular pathway analysis and clinical evaluation. Biomed 7:27. https://doi.org/10.3390/BIOMEDICINES7020027

    Article  CAS  Google Scholar 

  78. Gentile P, Calabrese C, De Angelis B et al (2020) Impact of the different preparation methods to obtain autologous non-activated platelet-rich plasma (A-PRP) and activated platelet-rich plasma (AA-PRP) in plastic surgery: Wound healing and hair regrowth evaluation. Int J Mol Sci. https://doi.org/10.3390/ijms21020431

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gentile P, Alves R, Cole JP et al (2021) AIRMESS—Academy of International Regenerative Medicine & Surgery Societies: recommendations in the use of platelet-rich plasma (PRP), autologous stem cell-based therapy (ASC-BT) in androgenetic alopecia and wound healing. Exp Opin Bio Tech. https://doi.org/10.1080/14712598.2021.1908995

    Article  Google Scholar 

Download references

Acknowledgements

Magda Sawicka (Unilever, Colworth) for the Fluidigm experiment, Fei-Ling Lim (Unilever, Colworth) for IPA® analysis and Ranjit Bhogal (Unilever, Colworth). We also thank the Bioimaging Core Facility (University of Manchester) for their snapshot imaging equipment and Derek Pye for help with daily lab activities.

Funding

Biotechnology and Biological Science Research Council (BBSRC) iCASE Studentship (awardees: R.P., J.P., recipient: C.N.), co-funded by Unilever, Colworth, UK; NIHR Manchester Biomedical Research Centre, Inflammatory Hair Diseases Programme (Lead: R.P.), University of Miami start-up funds (R.P.), and Frost Endowed Scholarship to R.P. (Dept. of Dermatology).

Author information

Authors and Affiliations

Authors

Contributions

C.N and R.P designed the experiments, which C.N and J.J. ran. A.S. provided hair samples for the study. C.N., J.P., D.M.A. and R.P. interpreted the data, and R.P. supervised the project. C.N. and R.P. wrote the manuscript, which was edited by all co-authors.

Corresponding author

Correspondence to Carina Nicu.

Ethics declarations

Conflict of interest

No conflicts of interest to declare; for the record, R.P. is the founder and CEO of Monasterium Laboratory, Münster, Germany, and J.P. is an employee of Unilever Plc.

Ethical approval

Approval for tissue use granted by the Manchester Skin Health Biobank (19/NW/0082).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 KB)

403_2021_2291_MOESM2_ESM.pdf

Supplementary file2. Online Resource 1. Adiponectin oligomers do not affect keratinocyte proliferation, hair shaft differentiation or follicular pigmentation following 48 h cultures of dissected HFs. (a) ISH for ADIPOQ on control scalp skin clearly showed that perifollicular mature dermal adipocytes are the only source of adiponectin within dWAT. (b,c) Ki-67 staining revealed insignificantly lower levels of proliferation [p = 0.0843] and (d) no effect upon DP stalk fibroblasts [p = 0.1978]. (e,f) Similarly, K85 staining showed no difference in the amount of hair shaft differentiation within the pre-cortex following treatment with Acrp30 [p = 0.4295]. (g) The action of Acrp30 upon human HFs was validated using qPCR which showed upregulation of ADIPOR1 [p = 0.0932] and ADIPOR2 [p = 0.1341]. Pigmentation was also not modulated by Acrp30, as observed with (h,i) Masson Fontana [p =] and (k,l) gp100 stains [p = 0.9253], with no differences present in terms of (j) melanocyte number or (m) dendricity [all p values > 0.05]. n = 3 donors with 2–5 HFs analysed per donor per condition. 2-WAY ANOVA with multiple comparisons for (a). Unpaired (parametric) T-test for (d), (e), (g), (j), (m), (l). Mann–Whitney (nonparametric) U-test for (h). One-Way ANOVA test for (n).* P < 0.05 ** P < 0.01 *** P < 0.001. Scale bar = 50 μm across all images. Online Resource 2. Acrp30 has no effect upon keratinocyte proliferation or K15 levels within human HFs ex vivo. Treating dissected human HFs with increasing concentrations of recombinant Acrp30 oligomer mix had no effect upon proliferation within the hair bulb (a,b), or on expression levels of stem cell marker K15 (a,c), though K15 levels were slightly decreased following treatment with 5 μg/mL Acrp30 [all p-values > 0.05]. Similarly, Acrp30 did not modulate numbers of K15+ Ki-67+ cells across the HF other than within the hair bulb (a,d) following 1 μg/mL [p = 0.0664] and 5 μg/mL treatment [p = 0.0288]. n = 3 donors, 8–12 HFs per condition. * P < 0.05 ** P < 0.01 *** P < 0.001. Scale bar = 50 μm across all images. Online Resource 3. Acrp30 negatively modulates c-Met expression within both dissected HFs and HFs cultured with perifollicular dWAT, but has no effect upon HGF secretion. Acrp30 treatment resulted in downregulation of the HGF receptor c-Met (a) within both the hair matrix and DP fibroblasts of dissected HFs (b,c,) and tendentially in HF + dWAT (d,e) within the hair matrix [p = 0.2344] and dermal papilla [p = 0.1389]. However, Acrp30 did not affect levels of secreted HGF in either HF (f) or HF + dWAT cultures (g) [all p-values > 0.05]. n = 2 donors, 6HFs per condition for (b,c). n = 3 donors, 9 HFs per condition for (d) and (e). n = 3 donors for (f); n = 4 donors for (g). Unpaired (parametric) T-test for (c), (f); Mann–Whitney (nonparametric) U-test for (b); Kruskal–Wallis (nonparametric) test for (d), (e), One-Way ANOVA (parametric) for (g). Scale bar = 50 μm across all images. Online Resource 4. Acrp30 oligomer is predicted to downregulate key genes in the pigmentation pathway following 24-h ex vivo organ culture. Ingenuity® Pathway Analysis conducted on results from a multiplex qPCR (Fluidigm) revealed that Acrp30 was predicted to downregulate pigmentation genes such as SCF, MSH-R, MITF, TYR and TYRP1, and upregulate DCT, in dissected full-length human hair follicles. Online Resource 5. Acrp30 oligomer is predicted to inhibit the Wnt/β-catenin pathway following 24-h ex vivo organ culture. Ingenuity® Pathway Analysis conducted on results from a multiplex qPCR (Fluidigm) revealed that Acrp30 was predicted to downregulate Wnt/β-catenin genes such as LEF1, AXIN2, WNT6, WNT10B and various Frizzled receptors in dissected full-length human hair follicles, as well as up-regulating Wnt inhibitor DKK1. (PDF 751 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicu, C., Jackson, J., Shahmalak, A. et al. Adiponectin negatively regulates pigmentation, Wnt/β-catenin and HGF/c-Met signalling within human scalp hair follicles ex vivo. Arch Dermatol Res 315, 603–612 (2023). https://doi.org/10.1007/s00403-021-02291-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-021-02291-2

Keywords

Navigation