Skip to main content

Advertisement

Log in

Unbearable transepidermal water loss (TEWL) experimental variability: why?

  • Review
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Despite the wide breadth of research, much disparity exists in transepidermal water loss (TEWL) research data—possibly due to uncontrolled experimental variables. We determined whether such experimental variables significantly impact TEWL studies and cause this disparity. An initial literature search regarding TEWL was performed to determine potential confounding variables. A subsequent search procured relevant and representative studies investigating the impact of these variables on TEWL. Variables, such as age, anatomic site, and temperature, impact TEWL and should be controlled for in TEWL studies. Other variables, such as smoking and menstrual cycle, have inconclusive results or do not provide sufficient data breadth to make a conclusion regarding its effect, if such an effect exists, on TEWL metrics. Therefore, these variables require further research to determine their potential impact on TEWL. Matching for as many experimental variables as possible may reduce the disparity in TEWL data/conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All literature is open and available to the public.

References

  1. Altemus M, Rao B, Dhabhar FS, Ding W, Granstein RD (2001) Stress-induced changes in skin barrier function in healthy women. J Invest Dermatol 117:309–317. https://doi.org/10.1046/j.1523-1747.2001.01373.x

    Article  CAS  PubMed  Google Scholar 

  2. Baumrin E, Mukansi MM, Sibisi C, Mosam A, Stamatas GN, Dlova NC (2018) Epidermal barrier function in healthy black South African infants compared with adults. Pediatr Dermatol 35:e425–e426. https://doi.org/10.1111/pde.13675

    Article  PubMed  Google Scholar 

  3. Berardesca E, de Rigal J, Leveque JL, Maibach HI (1991) In vivo biophysical characterization of skin physiological differences in races. Dermatologica 182:89–93. https://doi.org/10.1159/000247752

    Article  CAS  PubMed  Google Scholar 

  4. Black D, Del Pozo A, Lagarde JM, Gall Y (2000) Seasonal variability in the biophysical properties of stratum corneum from different anatomical sites. Skin Res Technol 6:70–76. https://doi.org/10.1034/j.1600-0846.2000.006002070.x

    Article  PubMed  Google Scholar 

  5. Bock M, Wulfhorst B, John SM (2007) Site variations in susceptibility to SLS. Contact Dermatitis 57:94–96. https://doi.org/10.1111/j.1600-0536.2007.01159.x

    Article  CAS  PubMed  Google Scholar 

  6. Boireau-Adamezyk E, Baillet-Guffroy A, Stamatas GN (2014) Age-dependent changes in stratum corneum barrier function. Skin Res Technol 20:409–415. https://doi.org/10.1111/srt.12132

    Article  CAS  PubMed  Google Scholar 

  7. Chen C-P, Hwang R-L, Chang S-Y, Lu Y-T (2011) Effects of temperature steps on human skin physiology and thermal sensation response. Build Environ 46:2387–2397. https://doi.org/10.1016/j.buildenv.2011.05.021

    Article  Google Scholar 

  8. Chilcott RP, Farrar R (2000) Biophysical measurements of human forearm skin in vivo: effects of site, gender, chirality and time. Skin Res Technol 6:64–69. https://doi.org/10.1034/j.1600-0846.2000.006002064.x

    Article  PubMed  Google Scholar 

  9. Choe SJ, Kim D, Kim EJ, Ahn JS, Choi EJ, Son ED, Lee TR, Choi EH (2018) Psychological stress deteriorates skin barrier function by activating 11beta-hydroxysteroid dehydrogenase 1 and the HPA axis. Sci Rep 8:6334. https://doi.org/10.1038/s41598-018-24653-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Choi J, Kim S, Han J, Kim E (2018) 1275 The effect of drinking and sleep deprivation on the men skin. J Investig Dermatol 138:S217. https://doi.org/10.1016/j.jid.2018.03.1291

    Article  Google Scholar 

  11. Conti A, Schiavi ME, Seidenari S (1995) Capacitance, transepidermal water loss and causal level of sebum in healthy subjects in relation to site, sex and age. Int J Cosmet Sci 17:77–85. https://doi.org/10.1111/j.1467-2494.1995.tb00111.x

    Article  CAS  PubMed  Google Scholar 

  12. Cravello B, Ferri A (2008) Relationships between skin properties and environmental parameters. Skin Res Technol 14:180–186. https://doi.org/10.1111/j.1600-0846.2007.00275.x

    Article  PubMed  Google Scholar 

  13. Cua AB, Wilhelm KP, Maibach HI (1990) Cutaneous sodium lauryl sulphate irritation potential: age and regional variability. Br J Dermatol 123:607–613. https://doi.org/10.1111/j.1365-2133.1990.tb01477.x

    Article  CAS  PubMed  Google Scholar 

  14. Cua AB, Wilhelm KP, Maibach HI (1990) Frictional properties of human skin: relation to age, sex and anatomical region, stratum corneum hydration and transepidermal water loss. Br J Dermatol 123:473–479. https://doi.org/10.1111/j.1365-2133.1990.tb01452.x

    Article  CAS  PubMed  Google Scholar 

  15. De Paepe K, Houben E, Adam R, Hachem JP, Roseeuw D, Rogiers V (2009) Seasonal effects on the nasolabial skin condition. Skin Pharmacol Physiol 22:8–14. https://doi.org/10.1159/000159772

    Article  PubMed  Google Scholar 

  16. De Paepe K, Houben E, Adam R, Wiesemann F, Rogiers V (2005) Validation of the VapoMeter, a closed unventilated chamber system to assess transepidermal water loss vs. the open chamber Tewameter. Skin Res Technol 11:61–69. https://doi.org/10.1111/j.1600-0846.2005.00101.x

    Article  PubMed  Google Scholar 

  17. Elias PM (2008) Skin barrier function. Curr Allergy Asthma Rep 8:299–305. https://doi.org/10.1007/s11882-008-0048-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Firooz A, Sadr B, Babakoohi S, Sarraf-Yazdy M, Fanian F, Kazerouni-Timsar A, Nassiri-Kashani M, Naghizadeh MM, Dowlati Y (2012) Variation of biophysical parameters of the skin with age, gender, and body region. Sci World J 2012:386936. https://doi.org/10.1100/2012/386936

    Article  Google Scholar 

  19. Fluhr JW, Feingold KR, Elias PM (2006) Transepidermal water loss reflects permeability barrier status: validation in human and rodent in vivo and ex vivo models. Exp Dermatol 15:483–492. https://doi.org/10.1111/j.1600-0625.2006.00437.x

    Article  PubMed  Google Scholar 

  20. Fluhr JW, Pfisterer S, Gloor M (2000) Direct comparison of skin physiology in children and adults with bioengineering methods. Pediatr Dermatol 17:436–439. https://doi.org/10.1046/j.1525-1470.2000.01815.x

    Article  CAS  PubMed  Google Scholar 

  21. Fujimura T, Miyauchi Y, Shima K, Hotta M, Tsujimura H, Kitahara T, Takema Y, Palungwachira P, Laohathai D, Chanthothai J, Nararatwanchai T (2018) Ethnic differences in stratum corneum functions between Chinese and Thai infants residing in Bangkok, Thailand. Pediatr Dermatol 35:87–91. https://doi.org/10.1111/pde.13335

    Article  PubMed  Google Scholar 

  22. Fujimura T, Sato N, Ophaswongse S, Takagi Y, Hotta M, Kitahara T, Takema Y, Palungwachira P (2013) Characterization of vulvar skin of healthy Thai women: influence of sites, age and menopause. Acta Derm Venereol 93:242–245. https://doi.org/10.2340/00015555-1534

    Article  PubMed  Google Scholar 

  23. Fukunaga S, Wada S, Sato T, Hamaguchi M, Aoi W, Higashi A (2018) Effect of torula yeast (Candida utilis)-derived glucosylceramide on skin dryness and other skin conditions in winter. J Nutr Sci Vitaminol 64:265–270. https://doi.org/10.3177/jnsv.64.265

    Article  CAS  PubMed  Google Scholar 

  24. Grice JE, Moghimi HR, Ryan E, Zhang Q, Haridass I, Mohammed Y, Roberts MS (2017) Non-formulation parameters that affect penetrant-skin-vehicle interactions and percutaneous absorption. In: ND, H.I M (eds) Percutaneous penetration enhancers drug penetration into/through the skin. Springer, Heidelberg. https://doi.org/10.1007/978-3-662-53270-6_4

  25. Grice K, Bettley FR (1967) The effect of skin temperature and vascular change on the rate of transepidermal water loss. Br J Dermatol 79:582–588. https://doi.org/10.1111/j.1365-2133.1967.tb11421.x

    Article  CAS  PubMed  Google Scholar 

  26. Guida B, Nino M, Perrino NR, Laccetti R, Trio R, Labella S, Balato N (2010) The impact of obesity on skin disease and epidermal permeability barrier status. J Eur Acad Dermatol Venereol 24:191–195. https://doi.org/10.1111/j.1468-3083.2009.03503.x

    Article  CAS  PubMed  Google Scholar 

  27. Harvell J, Hussona-Saeed I, Maibach HI (1992) Changes in transepidermal water loss and cutaneous blood flow during the menstrual cycle. Contact Dermatitis 27:294–301. https://doi.org/10.1111/j.1600-0536.1992.tb03283.x

    Article  CAS  PubMed  Google Scholar 

  28. Hillebrand GG, Wickett R (2007) Epidemiology of skin barrier function: Host and environmental factors. In: Walters KA, Roberts MS (eds) Dermatologic, cosmeceutic, and cosmetic development therapeutic and novel approaches. CRC Press, 129–156

  29. Holder DJ, Marino MJ (2017) Logical experimental design and execution in the biomedical sciences. Curr Protoc Pharmacol. https://doi.org/10.1002/cpph.20

    Article  PubMed  Google Scholar 

  30. Hong YH, Chang UJ, Kim YS, Jung EY, Suh HJ (2017) Dietary galacto-oligosaccharides improve skin health: a randomized double blind clinical trial. Asia Pac J Clin Nutr 26:613–618. https://doi.org/10.6133/apjcn.052016.05

    Article  CAS  PubMed  Google Scholar 

  31. Jang S, Han J, Jeon H, Kim A, Kim E (2019) 295 A study of skin characteristic after sleeping according to age. J Investig Dermatol 139:S51. https://doi.org/10.1016/j.jid.2019.03.371

    Article  Google Scholar 

  32. Kikuchi K, Kobayashi H, Le Fur I, Tschachler E, Tagami H (2002) The winter season affects more severely the facial skin than the forearm skin: comparative biophysical studies conducted in the same Japanese females in later summer and winter. Exogenous Dermatol 1:32–38. https://doi.org/10.1159/000047989

    Article  Google Scholar 

  33. Kottner J, Lichterfeld A, Blume-Peytavi U (2013) Transepidermal water loss in young and aged healthy humans: a systematic review and meta-analysis. Arch Dermatol Res 305:315–323. https://doi.org/10.1007/s00403-012-1313-6

    Article  PubMed  Google Scholar 

  34. Kuwano T, Kawano S, Kagawa D, Yasuda Y, Inoue Y, Murase T (2018) Dietary intake of glucono-delta-lactone attenuates skin inflammation and contributes to maintaining skin condition. Food Funct 9:1524–1531. https://doi.org/10.1039/c7fo01548h

    Article  CAS  PubMed  Google Scholar 

  35. Lamke LO, Wedin B (1971) Water evaporation from normal skin under different environmental conditions. Acta Derm Venereol 51:111–119

    CAS  PubMed  Google Scholar 

  36. Lammintausta K, Maibach HI, Wilson D (1987) Irritant reactivity in males and females. Contact Dermatitis 17:276–280. https://doi.org/10.1111/j.1600-0536.1987.tb01477.x

    Article  CAS  PubMed  Google Scholar 

  37. Le Fur I, Reinberg A, Lopez S, Morizot F, Mechkouri M, Tschachler E (2001) Analysis of circadian and ultradian rhythms of skin surface properties of face and forearm of healthy women. J Invest Dermatol 117:718–724. https://doi.org/10.1046/j.0022-202x.2001.01433.x

    Article  PubMed  Google Scholar 

  38. Lee M, Jung Y, Kim E, Lee HK (2017) Comparison of skin properties in individuals living in cities at two different altitudes: an investigation of the environmental effect on skin. J Cosmet Dermatol 16:26–34. https://doi.org/10.1111/jocd.12270

    Article  PubMed  Google Scholar 

  39. Li X, Galzote C, Yan X, Li L, Wang X (2014) Characterization of Chinese body skin through in vivo instrument assessments, visual evaluations, and questionnaire: influences of body area, inter-generation, season, sex, and skin care habits. Skin Res Technol 20:14–22. https://doi.org/10.1111/srt.12076

    Article  PubMed  Google Scholar 

  40. Loffler H, Aramaki JU, Effendy I (2002) The influence of body mass index on skin susceptibility to sodium lauryl sulphate. Skin Res Technol 8:19–22. https://doi.org/10.1046/j.0909-752x

    Article  CAS  PubMed  Google Scholar 

  41. Luebberding S, Krueger N, Kerscher M (2013) Skin physiology in men and women: in vivo evaluation of 300 people including TEWL, SC hydration, sebum content and skin surface pH. Int J Cosmet Sci 35:477–483. https://doi.org/10.1111/ics.12068

    Article  CAS  PubMed  Google Scholar 

  42. Machado M, Salgado TM, Hadgraft J, Lane ME (2010) The relationship between transepidermal water loss and skin permeability. Int J Pharm 384:73–77. https://doi.org/10.1016/j.ijpharm.2009.09.044

    Article  CAS  PubMed  Google Scholar 

  43. Marrakchi S, Maibach HI (2007) Biophysical parameters of skin: map of human face, regional, and age-related differences. Contact Dermatitis 57:28–34. https://doi.org/10.1111/j.1600-0536.2007.01138.x

    Article  PubMed  Google Scholar 

  44. Mehta HH, Nikam VV, Jaiswal CR, Mehta HB (2018) A cross-sectional study of variations in the biophysical parameters of skin among healthy volunteers. Indian J Dermatol Venereol Leprol 84:521. https://doi.org/10.4103/ijdvl.IJDVL_1151_15

    Article  PubMed  Google Scholar 

  45. Mohammed D, Matts PJ, Hadgraft J, Lane ME (2012) Variation of stratum corneum biophysical and molecular properties with anatomic site. AAPS J 14:806–812. https://doi.org/10.1208/s12248-012-9400-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Muizzuddin N, Ingrassia M, Marenus KD, Maes DH, Mammone T (2013) Effect of seasonal and geographical differences on skin and effect of treatment with an osmoprotectant: sorbitol. J Cosmet Sci 64:165–174

    CAS  PubMed  Google Scholar 

  47. Muizzuddin N, Marenus K, Vallon P, Maes D (1997) Effect of cigarette smoke on skin. J Soc Cosmet Chem 48:235–242

    Google Scholar 

  48. Nilsson GE (1977) Measurement of water exchange through skin. Med Biol Eng Comput 15:209–218. https://doi.org/10.1007/BF02441040

    Article  CAS  PubMed  Google Scholar 

  49. Nino M, Franzese A, Ruggiero Perrino N, Balato N (2012) The effect of obesity on skin disease and epidermal permeability barrier status in children. Pediatr Dermatol 29:567–570. https://doi.org/10.1111/j.1525-1470.2012.01738.x

    Article  PubMed  Google Scholar 

  50. Ostermeier M, Kerscher M (2018) Diurnal rhythm of our skin: myth or reality? evaluation by using biophysical measurements [abstract]. Akt Dermatol 539

  51. Oyetakin-White P, Suggs A, Koo B, Matsui MS, Yarosh D, Cooper KD, Baron ED (2015) Does poor sleep quality affect skin ageing? Clin Exp Dermatol 40:17–22. https://doi.org/10.1111/ced.12455

    Article  CAS  PubMed  Google Scholar 

  52. Panisset F, Treffel P, Faivre B, Lecomte PB, Agache P (1992) Transepidermal water loss related to volar forearm sites in humans. Acta Derm Venereol 72:4–5

    CAS  PubMed  Google Scholar 

  53. Peer RP, Maibach HI (Submitted for publication review) Did human evolution in skin of color enhance TEWL barrier?

  54. Pinnagoda J, Tupker RA, Agner T, Serup J (1990) Guidelines for transepidermal water loss (TEWL) measurement. A report from the Standardization Group of the European Society of Contact Dermatitis. Contact Dermatitis 22:164–178. https://doi.org/10.1111/j.1600-0536.1990.tb01553.x

    Article  CAS  PubMed  Google Scholar 

  55. Pinnagoda J, Tupker RA, Coenraads PJ, Nater JP (1989) Comparability and reproducibility of the results of water loss measurements: a study of 4 evaporimeters. Contact Dermatitis 20:241–246. https://doi.org/10.1111/j.1600-0536.1989.tb03139.x

    Article  CAS  PubMed  Google Scholar 

  56. Pinnagoda J, Tupker RA, Coenraads PJ, Nater JP (1989) Transepidermal water loss with and without sweat gland inactivation. Contact Dermatitis 21:16–22. https://doi.org/10.1111/j.1600-0536.1989.tb04679.x

    Article  CAS  PubMed  Google Scholar 

  57. Reinberg AE, Touitou Y, Soudant E, Bernard D, Bazin R, Mechkouri M (1996) Oral contraceptives alter circadian rhythm parameters of cortisol, melatonin, blood pressure, heart rate, skin blood flow, transepidermal water loss, and skin amino acids of healthy young women. Chronobiol Int 13:199–211. https://doi.org/10.3109/07420529609012653

    Article  CAS  PubMed  Google Scholar 

  58. Rogiers V, Group E (2001) EEMCO guidance for the assessment of transepidermal water loss in cosmetic sciences. Skin Pharmacol Appl Skin Physiol 14:117–128. https://doi.org/10.1159/000056341

    Article  Google Scholar 

  59. Rougier A, Lotte C, Corcuff P, Maibach H (1988) Relationship between skin permeability and corneocyte size according to anatomic site, age, and sex in man. J Soc Cosmet Chem 39:15–26

    Google Scholar 

  60. Sato N, Kitahara T, Fujimura T (2014) Age-related changes of stratum corneum functions of skin on the trunk and the limbs. Skin Pharmacol Physiol 27:181. https://doi.org/10.1159/000353912

    Article  CAS  PubMed  Google Scholar 

  61. Evaporimeters ServoMed (1981) Operation handbook. ServoMed, Sweden

    Google Scholar 

  62. Song EJ, Lee JA, Park JJ, Kim HJ, Kim NS, Byun KS, Choi GS, Moon TK (2015) A study on seasonal variation of skin parameters in Korean males. Int J Cosmet Sci 37:92–97. https://doi.org/10.1111/ics.12174

    Article  CAS  PubMed  Google Scholar 

  63. Spruit D (1971) The diurnal variation of water vapour loss from the skin in relation to temperature. Br J Dermatol 84:66–70. https://doi.org/10.1111/j.1365-2133.1971.tb14198.x

    Article  CAS  PubMed  Google Scholar 

  64. Sugino K, Imokawa G, Maibach HI (1993) Ethnic difference of stratum corneum lipid in relation to stratum corneum function [abstract]. J Invest Dermatol 100:587

    Google Scholar 

  65. Tavares L, Palma L, Santos O, Almeida MA, Bujan MJ, Rodrigues LM (2012) Body mass index and association with in vivo skin physiology [abstract]. Paper presented at the World Congress of the International Society for Biophysics and Imaging of the skin (ISBS), Copenhagen, Denmark

  66. Torres DPM, Gonçalves MdPF, Teixeira JA, Rodrigues LR (2010) Galacto-oligosaccharides: production. Properties Appl Sign Prebiotics 9:438–454. https://doi.org/10.1111/j.1541-4337.2010.00119.x

    Article  CAS  Google Scholar 

  67. Van der Valk PG, Maibach HI (1989) Potential for irritation increases from the wrist to the cubital fossa. Br J Dermatol 121:709–712. https://doi.org/10.1111/j.1365-2133.1989.tb08212.x

    Article  PubMed  Google Scholar 

  68. Vaughn AR, Clark AK, Notay M, Sivamani RK (2018) Randomized controlled pilot study of dietary supplementation with turmeric or herbal combination tablets on skin barrier function in healthy subjects. J Med Food 21:1260–1265. https://doi.org/10.1089/jmf.2018.0015

    Article  CAS  PubMed  Google Scholar 

  69. Wei KS, Stella C, Wehmeyer KR, Christman J, Altemeier A, Spruell R, Wimalasena RL, Fadayel GM, Reilman RA, Motlagh S, Stoffolano PJ, Benzing K, Wickett RR (2016) Effects of season stratum corneum barrier function and skin biomarkers. J Cosmet Sci 67:185–203

    PubMed  Google Scholar 

  70. Wen X, Jiang X (2011) Study on the relationship between neck skin and age, season [abstract]. J Clin Dermatol 40:601–605

    Google Scholar 

  71. Wilhelm KP, Cua AB, Maibach HI (1991) Skin aging. Effect on transepidermal water loss, stratum corneum hydration, skin surface pH, and casual sebum content. Arch Dermatol 127:1806–1809. https://doi.org/10.1001/archderm.127.12.1806

    Article  CAS  PubMed  Google Scholar 

  72. Wilson D, Berardesca E, Maibach HI (1988) In vitro transepidermal water loss: differences between black and white human skin. Br J Dermatol 119:647–652. https://doi.org/10.1111/j.1365-2133.1988.tb03478.x

    Article  CAS  PubMed  Google Scholar 

  73. Wilson DR, Maibach HI (1994) TEWL and the newborn. In: Peter E, Berardesca E, Maibach HI (eds) Bioengineering of the skin: water and the stratum corneum, vol 1. CRC Press Inc, Florida, pp 115–127

    Google Scholar 

  74. Xie X, Wang Y, Zeng Q, Lv Y, Hu R, Zhu K, Liu C, Lai W, Guan L (2018) Characteristic features of neck skin aging in Chinese women. J Cosmet Dermatol 17:935–944. https://doi.org/10.1111/jocd.12762

    Article  PubMed  Google Scholar 

  75. Xin S, Ye L, Man G, Lv C, Elias PM, Man MQ (2016) Heavy cigarette smokers in a Chinese population display a compromised permeability barrier. Biomed Res Int 2016:9704598. https://doi.org/10.1155/2016/9704598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang J, Tu Y, Man MQ, Zhang Y, Cha Y, Fan X, Wang Z, Zeng Z, He L (2020) Seasonal variations of epidermal biophysical properties in Kunming China: a self-controlled cohort study. Skin Res Technol. https://doi.org/10.1111/srt.12857

    Article  PubMed  Google Scholar 

  77. Ye C, Chen J, Yang S, Yi J, Chen H, Li M, Yin S, Lai W, Zheng Y (2020) Skin sensitivity evaluation: what could impact the assessment results? J Cosmet Dermatol 19:1231–1238. https://doi.org/10.1111/jocd.13128

    Article  PubMed  Google Scholar 

  78. Yosipovitch G, Xiong GL, Haus E, Sackett-Lundeen L, Ashkenazi I, Maibach HI (1998) Time-dependent variations of the skin barrier function in humans: transepidermal water loss, stratum corneum hydration, skin surface pH, and skin temperature. J Invest Dermatol 110:20–23. https://doi.org/10.1046/j.1523-1747.1998.00069.x

    Article  CAS  PubMed  Google Scholar 

  79. Young MM, Franken A, du Plessis JL (2019) Transepidermal water loss, stratum corneum hydration, and skin surface pH of female African and Caucasian nursing students. Skin Res Technol 25:88–95. https://doi.org/10.1111/srt.12614

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

Basic Science, Clinical, and Translational Research Summer Funding Provided by the University of Rochester School of Medicine and Dentistry.

Author information

Authors and Affiliations

Authors

Contributions

Equal participation by HM and RP: AB contributed to the discussion as well as editing.

Corresponding author

Correspondence to Reva P. Peer.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peer, R.P., Burli, A. & Maibach, H.I. Unbearable transepidermal water loss (TEWL) experimental variability: why?. Arch Dermatol Res 314, 99–119 (2022). https://doi.org/10.1007/s00403-021-02198-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-021-02198-y

Keywords

Navigation