Skip to main content

Advertisement

Log in

Circular RNA hsa_Circ_0005795 mediates cell proliferation of cutaneous basal cell carcinoma via sponging miR-1231

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Growing evidence has revealed that circular RNAs (circRNA) play critical roles in cancer progression. Here, we examined the function of a novel circRNA, Circ_0005795, in basal cell carcinoma (BCC) and explored the possible molecular mechanism. Nodular BCC and adjacent non-tumor tissues derived from 30 patients and 2 BCC cell lines were applied to analyze gene expression. Circ_0005795 loss- and gain-of-function were constructed to investigate BCC progression. Nuclear and cytoplasmic fractionation and luciferase assay were carried out to determine cellular localization and molecular interaction of Circ_0005795. Circ_0005795 expression was significantly elevated in BCC tissues and cells. Knockdown of Circ_0005795 dramatically reduced cell viability, colony formation, and anti-apoptotic protein levels, while increased caspase-3 activity. Circ_0005795 located in cytoplasm, which exerted its tumor-promoting effect through targeting and sponging miR-1231 in BCC cells. In summary, Circ_0005795 works as an oncogene in BCC, which might be used as a promising biomarker and a potential therapeutic target for BCC diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cameron MC, Lee E, Hibler BP, Barker CA, Mori S, Cordova M, Nehal KS, Rossi AM (2019) Basal cell carcinoma: epidemiology; pathophysiology; clinical and histological subtypes; and disease associations. J Am Acad Dermatol 80:303–317. https://doi.org/10.1016/j.jaad.2018.03.060

    Article  PubMed  Google Scholar 

  2. Chen G, Shi Y, Liu M, Sun J (2018) circHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma. Cell Death Dis 9:175. https://doi.org/10.1038/s41419-017-0204-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen LL (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17:205–211. https://doi.org/10.1038/nrm.2015.32

    Article  CAS  PubMed  Google Scholar 

  4. Chen LL, Yang L (2015) Regulation of circRNA biogenesis. RNA Biol 12:381–388. https://doi.org/10.1080/15476286.2015.1020271

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen T, Yang YJ, Li YK, Liu J, Wu PF, Wang F, Chen JG, Long LH (2016) Chronic administration tetrahydroxystilbene glucoside promotes hippocampal memory and synaptic plasticity and activates ERKs, CaMKII and SIRT1/miR-134 in vivo. J Ethnopharmacol 190:74–82. https://doi.org/10.1016/j.jep.2016.06.012

    Article  CAS  PubMed  Google Scholar 

  6. Ebbesen KK, Hansen TB, Kjems J (2017) Insights into circular RNA biology. RNA Biol 14:1035–1045. https://doi.org/10.1080/15476286.2016.1271524

    Article  PubMed  Google Scholar 

  7. Ebert MS, Sharp PA (2010) MicroRNA sponges: progress and possibilities. RNA 16:2043–2050. https://doi.org/10.1261/rna.2414110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Han D, Li J, Wang H, Su X, Hou J, Gu Y, Qian C, Lin Y, Liu X, Huang M, Li N, Zhou W, Yu Y, Cao X (2017) Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology 66:1151–1164. https://doi.org/10.1002/hep.29270

    Article  CAS  PubMed  Google Scholar 

  9. Kai D, Yannian L, Yitian C, Dinghao G, Xin Z, Wu J (2018) Circular RNA HIPK3 promotes gallbladder cancer cell growth by sponging microRNA-124. Biochem Biophys Res Commun 503:863–869. https://doi.org/10.1016/j.bbrc.2018.06.088

    Article  CAS  PubMed  Google Scholar 

  10. Khafaei M, Rezaie E, Mohammadi A, Shahnazi Gerdehsang P, Ghavidel S, Kadkhoda S, Zorrieh Zahra A, Forouzanfar N, Arabameri H, Tavallaie M (2019) miR-9: from function to therapeutic potential in cancer. J Cell Physiol. https://doi.org/10.1002/jcp.28210

    Article  PubMed  Google Scholar 

  11. Kiiski V, de Vries E, Flohil SC, Bijl MJ, Hofman A, Stricker BH, Nijsten T (2010) Risk factors for single and multiple basal cell carcinomas. Arch Dermatol 146:848–855. https://doi.org/10.1001/archdermatol.2010.155

    Article  PubMed  Google Scholar 

  12. Kleaveland B, Shi CY, Stefano J, Bartel DP (2018) A network of noncoding regulatory RNAs acts in the mammalian brain. Cell 174(350–362):e317. https://doi.org/10.1016/j.cell.2018.05.022

    Article  CAS  Google Scholar 

  13. Li W, Li Y, Sun Z, Zhou J, Cao Y, Ma W, Xie K, Yan X (2019) Comprehensive circular RNA profiling reveals the regulatory role of the hsa_circ_0137606/miR1231 pathway in bladder cancer progression. Int J Mol Med 44:1719–1728. https://doi.org/10.3892/ijmm.2019.4340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li X, Yang L, Chen LL (2018) The biogenesis, functions, and challenges of circular RNAs. Mol Cell 71:428–442. https://doi.org/10.1016/j.molcel.2018.06.034

    Article  CAS  PubMed  Google Scholar 

  15. Luan W, Shi Y, Zhou Z, Xia Y, Wang J (2018) circRNA_0084043 promote malignant melanoma progression via miR-153-3p/snail axis. Biochem Biophys Res Commun 502:22–29. https://doi.org/10.1016/j.bbrc.2018.05.114

    Article  CAS  PubMed  Google Scholar 

  16. Madan V, Hoban P, Strange RC, Fryer AA, Lear JT (2006) Genetics and risk factors for basal cell carcinoma. Br J Dermatol 154(Suppl 1):5–7. https://doi.org/10.1111/j.1365-2133.2006.07229.x

    Article  CAS  PubMed  Google Scholar 

  17. Mattick JS (2003) Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. BioEssays 25:930–939. https://doi.org/10.1002/bies.10332

    Article  CAS  PubMed  Google Scholar 

  18. Nagarajan P, Asgari MM, Green AC, Guhan SM, Arron ST, Proby CM, Rollison DE, Harwood CA, Toland AE (2019) Keratinocyte carcinomas: current concepts and future research priorities. Clin Cancer Res 25:2379–2391. https://doi.org/10.1158/1078-0432.CCR-18-1122

    Article  PubMed  Google Scholar 

  19. Nehal KS, Bichakjian CK (2018) Update on keratinocyte carcinomas. N Engl J Med 379:363–374. https://doi.org/10.1056/NEJMra1708701

    Article  CAS  PubMed  Google Scholar 

  20. Otto T, Sicinski P (2017) Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer 17:93–115. https://doi.org/10.1038/nrc.2016.138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Quan Z, Zhang BB, Yin F, Du J, Zhi YT, Xu J, Song N (2019) DDX5 silencing suppresses the migration of basal cell carcinoma cells by downregulating JAK2/STAT3 pathway. Technol Cancer Res Treat 18:1533033819892258. https://doi.org/10.1177/1533033819892258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Que SKT, Zwald FO, Schmults CD (2018) Cutaneous squamous cell carcinoma: Incidence, risk factors, diagnosis, and staging. J Am Acad Dermatol 78:237–247. https://doi.org/10.1016/j.jaad.2017.08.059

    Article  PubMed  Google Scholar 

  23. Shi YR, Wu Z, Xiong K, Liao QJ, Ye X, Yang P, Zu XB (2020) Circular RNA circKIF4A sponges miR-375/1231 to promote bladder cancer progression by upregulating NOTCH2 expression. Front Pharmacol 11:605. https://doi.org/10.3389/fphar.2020.00605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stoll L, Sobel J, Rodriguez-Trejo A, Guay C, Lee K, Veno MT, Kjems J, Laybutt DR, Regazzi R (2018) Circular RNAs as novel regulators of beta-cell functions in normal and disease conditions. Mol Metab 9:69–83. https://doi.org/10.1016/j.molmet.2018.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tan S, Gou Q, Pu W, Guo C, Yang Y, Wu K, Liu Y, Liu L, Wei YQ, Peng Y (2018) Circular RNA F-circEA produced from EML4-ALK fusion gene as a novel liquid biopsy biomarker for non-small cell lung cancer. Cell Res 28:693–695. https://doi.org/10.1038/s41422-018-0033-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Totonchy M, Leffell D (2017) Emerging concepts and recent advances in basal cell carcinoma. F1000Res 6:2085. https://doi.org/10.12688/f1000research.11314.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tsujimoto Y (1998) Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells 3:697–707. https://doi.org/10.1046/j.1365-2443.1998.00223.x

    Article  CAS  PubMed  Google Scholar 

  28. Verkouteren JAC, Ramdas KHR, Wakkee M, Nijsten T (2017) Epidemiology of basal cell carcinoma: scholarly review. Br J Dermatol 177:359–372. https://doi.org/10.1111/bjd.15321

    Article  CAS  PubMed  Google Scholar 

  29. Wang R, Zhang S, Chen X, Li N, Li J, Jia R, Pan Y, Liang H (2018) CircNT5E acts as a sponge of miR-422a to promote glioblastoma tumorigenesis. Cancer Res 78:4812–4825. https://doi.org/10.1158/0008-5472.CAN-18-0532

    Article  CAS  PubMed  Google Scholar 

  30. Wu S, Han J, Li WQ, Li T, Qureshi AA (2013) Basal-cell carcinoma incidence and associated risk factors in U.S. women and men. Am J Epidemiol 178:890–897. https://doi.org/10.1093/aje/kwt073

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yu CY, Kuo HC (2019) The emerging roles and functions of circular RNAs and their generation. J Biomed Sci 26:29. https://doi.org/10.1186/s12929-019-0523-z

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yu L, Gong X, Sun L, Zhou Q, Lu B, Zhu L (2016) The circular RNA Cdr1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression. PLoS ONE 11:e0158347. https://doi.org/10.1371/journal.pone.0158347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang J, Zhang J, Qiu W, Zhang J, Li Y, Kong E, Lu A, Xu J, Lu X (2018) MicroRNA-1231 exerts a tumor suppressor role through regulating the EGFR/PI3K/AKT axis in glioma. J Neurooncol 139:547–562. https://doi.org/10.1007/s11060-018-2903-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao ZJ, Shen J (2017) Circular RNA participates in the carcinogenesis and the malignant behavior of cancer. RNA Biol 14:514–521. https://doi.org/10.1080/15476286.2015.1122162

    Article  PubMed  Google Scholar 

  35. Zhong Z, Lv M, Chen J (2016) Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci Rep 6:30919. https://doi.org/10.1038/srep30919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhu H, Wu J, Cui X, Chen X (2017) Bmi-1 serves as a potential novel marker for progression in human cutaneous basal cell carcinoma. Int J Clin Exp Pathol 10:8928–8935

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linfeng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

All the patients were obtained informed consent following a protocol approved by the ethics board of Qingdao Municipal Hospital, and this study was conducted in accordance with the ethical standards formulated in the Declaration of Helsinki.

Informed consent

All participants in this study were informed and gave a written consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, Y. & Li, L. Circular RNA hsa_Circ_0005795 mediates cell proliferation of cutaneous basal cell carcinoma via sponging miR-1231. Arch Dermatol Res 313, 773–782 (2021). https://doi.org/10.1007/s00403-020-02174-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-020-02174-y

Keywords

Navigation