Skip to main content

Advertisement

Log in

Epoprostenol up-regulates serum adiponectin level in patients with systemic sclerosis: therapeutic implications

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Introduction

Adiponectin, resistin and leptin belong to adipokines, a group of molecules secreted mainly by the adipose tissue, which impaired expression may be a missing link between various manifestations of systemic sclerosis. Adiponectin, which is also released in small amounts by the endothelium, possesses anti-inflammatory, anti-fibrotic and protective against endothelial injury properties. Both leptin and resistin exhibit features which are contradictory to adiponectin, as they trigger inflammation and the activation of skin fibroblasts. Epoprostenol is a prostaglandin analogue with powerful vasodilator activity and inhibitory effect on platelet aggregation. The aim of the study was to evaluate whether epoprostenol may have an effect on serum adipokine levels in patients with systemic sclerosis.

Methods

A total of 27 patients were included in the study and received epoprostenol intravenously (25 µg of per day for 3 consecutive days). Serum concentrations of total adiponectin, resistin and leptin were assessed with enzyme-linked immunosorbent essay (R&D Systems, Minneapolis, MN, USA).

Results

In all SSc patients, the basal level of adiponectin was significantly lower compared to healthy controls (mean 6.00 \(\pm \) 2.81 μg/ml vs. 8.8 \(\pm \) 4.3 μg/ml, p = 0.02) and basal level of resistin (mean 11.12 \(\pm \) 3.36 ng/ml vs. 8.54 \(\pm \) 3.07 ng/ml p = 0.02) was significantly higher than in the control group. The serum concentration of adiponectin increased significantly after treatment with epoprostenol (6.00 \(\pm \) 2.81 μg/ml vs 9.29 \(\pm \) 6.05 μg/ml; P = 0.002). The level of resistin and leptin remained unchanged.

Conclusion

Epoprostenol infusions up-regulate the serum concentration of adiponectin in patients with systemic sclerosis. In our opinion, future studies on treatments in systemic sclerosis should address the issue of their effect on adipokine metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Achari AE, Jain SK (2017) Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci 18:1321. https://doi.org/10.3390/ijms18061321

    Article  CAS  PubMed Central  Google Scholar 

  2. Arakawa H, Jinnin M, Muchemwa FC, Makino T, Kajihara I, Makino K, Honda N, Sakai K, Fukushima S, Ihn H (2011) Adiponectin expression is decreased in the involved skin and sera of diffuse cutaneous scleroderma patients. Exp Dermatol 20:764–766. https://doi.org/10.1111/j.1600-0625.2011.01310.x

    Article  CAS  PubMed  Google Scholar 

  3. Boydens C, Maenhaut N, Pauwels B, Decaluwe K, Van de Voorde J (2012) Adipose tissue as regulator of vascular tone. Curr Hypertens Rep 14:270–278. https://doi.org/10.1007/s11906-012-0259-6

    Article  CAS  PubMed  Google Scholar 

  4. Chu LY, Liou JY, Wu KK (2015) Prostacyclin protects vascular integrity via PPAR/14-3-3 pathway. Prostaglandins Other Lipid Mediat 118–119:19–27. https://doi.org/10.1016/j.prostaglandins.2015.04.006

    Article  CAS  PubMed  Google Scholar 

  5. Cruz JE, Ward A, Anthony S, Chang S, Bae HB, Hermes-DeSantis ER (2016) Evidence for the use of epoprostenol to treat raynaud’s phenomenon with or without digital ulcers. Ann Pharmacother 50:1060–1067. https://doi.org/10.1177/1060028016660324

    Article  CAS  PubMed  Google Scholar 

  6. Cutolo M, Smith V, Furst DE, Khanna D, Herrick AL (2017) Points to consider-Raynaud’s phenomenon in systemic sclerosis. Rheumatology (Oxford) 56:v45–v48. https://doi.org/10.1093/rheumatology/kex199

    Article  CAS  Google Scholar 

  7. Dewachter C, Belhaj A, Rondelet B, Vercruyssen M, Schraufnagel DP, Remmelink M, Brimioulle S, Kerbaul F, Naeije R, Dewachter L (2015) Myocardial inflammation in experimental acute right ventricular failure: Effects of prostacyclin therapy. J Heart Lung Transplant 34:1334–1345. https://doi.org/10.1016/j.healun.2015.05.004

    Article  PubMed  Google Scholar 

  8. Fesus G, Dubrovska G, Gorzelniak K, Kluge R, Huang Y, Luft FC, Gollasch M (2007) Adiponectin is a novel humoral vasodilator. Cardiovasc Res 75:719–727. https://doi.org/10.1016/j.cardiores.2007.05.025

    Article  CAS  PubMed  Google Scholar 

  9. Francisco V, Ruiz-Fernandez C, Pino J, Mera A, Angel Gonzalez-Gay M, Gomez R, Lago F, Mobasheri A, Gualillo O (2019) Adipokines: linking metabolic syndrome, the immune system, and arthritic diseases. Biochem Pharmacol. https://doi.org/10.1016/j.bcp.2019.03.030

    Article  PubMed  Google Scholar 

  10. Freitas Lima LC, Braga VA, de Franca Silva MS, Cruz JC, Sousa Santos SH, de Oliveira Monteiro MM, Balarini CM (2015) Adipokines, diabetes and atherosclerosis: an inflammatory association. Front Physiol 6:304. https://doi.org/10.3389/fphys.2015.00304

    Article  PubMed  PubMed Central  Google Scholar 

  11. Friedman J (2016) The long road to leptin. J Clin Invest 126:4727–4734. https://doi.org/10.1172/jci91578

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fruhbeck G, Catalan V, Rodriguez A, Ramirez B, Becerril S, Salvador J, Portincasa P, Colina I, Gomez-Ambrosi J (2017) Involvement of the leptin-adiponectin axis in inflammation and oxidative stress in the metabolic syndrome. Sci Rep 7:6619. https://doi.org/10.1038/s41598-017-06997-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gomart S, Gaudreau-Menard C, Jespers P, Dilek OG, Hupkens E, Hanthazi A, Naeije R, Melot C, Labranche N, Dewachter L, Mc Entee K (2017) Leptin-induced endothelium-independent vasoconstriction in thoracic aorta and pulmonary artery of spontaneously hypertensive rats: role of calcium channels and stores. PLoS ONE 12:e0169205. https://doi.org/10.1371/journal.pone.0169205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grossini E, Farruggio S, Qoqaiche F, Raina G, Camillo L, Sigaudo L, Mary D, Surico N, Surico D (2016) Monomeric adiponectin modulates nitric oxide release and calcium movements in porcine aortic endothelial cells in normal/high glucose conditions. Life Sci 161:1–9. https://doi.org/10.1016/j.lfs.2016.07.010

    Article  CAS  PubMed  Google Scholar 

  15. Gryglewski RJ (2008) Prostacyclin among prostanoids. Pharmacol Rep 60:3–11

    CAS  PubMed  Google Scholar 

  16. Herrick AL (2017) Therapeutic implications from the pathogenesis of Raynaud’s phenomenon. Expert Rev Clin Immunol 13:723–735. https://doi.org/10.1080/1744666x.2017.1279052

    Article  CAS  PubMed  Google Scholar 

  17. Jamroz-Wisniewska A, Gertler A, Solomon G, Wood ME, Whiteman M, Beltowski J (2014) Leptin-induced endothelium-dependent vasorelaxation of peripheral arteries in lean and obese rats: role of nitric oxide and hydrogen sulfide. PLoS ONE 9:e86744. https://doi.org/10.1371/journal.pone.0086744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Katusic ZS, Santhanam AV, He T (2012) Vascular effects of prostacyclin: does activation of PPARdelta play a role? Trends Pharmacol Sci 33:559–564. https://doi.org/10.1016/j.tips.2012.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Knobler R, Moinzadeh P, Hunzelmann N, Kreuter A, Cozzio A, Mouthon L, Cutolo M, Rongioletti F, Denton CP, Rudnicka L, Frasin LA, Smith V, Gabrielli A, Aberer E, Bagot M, Bali G, Bouaziz J, Braae Olesen A, Foeldvari I, Frances C, Jalili A, Just U, Kahari V, Karpati S, Kofoed K, Krasowska D, Olszewska M, Orteu C, Panelius J, Parodi A, Petit A, Quaglino P, Ranki A, Sanchez Schmidt JM, Seneschal J, Skrok A, Sticherling M, Sunderkotter C, Taieb A, Tanew A, Wolf P, Worm M, Wutte NJ, Krieg T (2017) European Dermatology Forum S1-guideline on the diagnosis and treatment of sclerosing diseases of the skin, part 1: localized scleroderma, systemic sclerosis and overlap syndromes. J Eur Acad Dermatol Venereol 31:1401–1424. doi:https://doi.org/10.1111/jdv.14458

  20. Kobayashi K, Omori K, Murata T (2018) Role of prostaglandins in tumor microenvironment. Cancer Metastasis Rev 37:347–354. https://doi.org/10.1007/s10555-018-9740-2

    Article  CAS  PubMed  Google Scholar 

  21. Korman B (2019) Evolving insights into the cellular and molecular pathogenesis of fibrosis in systemic sclerosis. Transl Res. https://doi.org/10.1016/j.trsl.2019.02.010

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kowal-Bielecka O, Fransen J, Avouac J, Becker M, Kulak A, Allanore Y, Distler O, Clements P, Cutolo M, Czirjak L, Damjanov N, Del Galdo F, Denton CP, Distler JHW, Foeldvari I, Figelstone K, Frerix M, Furst DE, Guiducci S, Hunzelmann N, Khanna D, Matucci-Cerinic M, Herrick AL, van den Hoogen F, van Laar JM, Riemekasten G, Silver R, Smith V, Sulli A, Tarner I, Tyndall A, Welling J, Wigley F, Valentini G, Walker UA, Zulian F, Muller-Ladner U (2017) Update of EULAR recommendations for the treatment of systemic sclerosis. Ann Rheum Dis 76:1327–1339. https://doi.org/10.1136/annrheumdis-2016-209909

    Article  PubMed  Google Scholar 

  23. Krasowska D, Rudnicka L, Dańczak-Pazdrowska A, Chodorowska G, Woźniacka A, Lis-Święty A, Czuwara J, Maj J, Majewski S, Sysa-Jędrzejowska A, Wojas-Pelc A (2017) Systemic sclerosis—diagnostic and therapeutic recommendations of the Polish Dermatological Society. Part 2: treatment. Przegla̧d Dermatologiczny 104:583–596. doi:https://doi.org/10.5114/dr.2017.71831

  24. La Cava A (2017) Leptin in inflammation and autoimmunity. Cytokine 98:51–58. https://doi.org/10.1016/j.cyto.2016.10.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lacy SH, Woeller CF, Thatcher TH, Pollock SJ, Small EM, Sime PJ, Phipps RP (2019) Activated human lung fibroblasts produce extracellular vesicles with antifibrotic prostaglandins. Am J Respir Cell Mol Biol 60:269–278. https://doi.org/10.1165/rcmb.2017-0248OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee M, Lee E, Jin SH, Ahn S, Kim SO, Kim J, Choi D, Lim KM, Lee ST, Noh M (2018) Leptin regulates the pro-inflammatory response in human epidermal keratinocytes. Arch Dermatol Res 310:351–362. https://doi.org/10.1007/s00403-018-1821-0

    Article  CAS  PubMed  Google Scholar 

  27. Lee YH, Song GG (2017) Meta-analysis of circulating adiponectin, leptin, and resistin levels in systemic sclerosis. Z Rheumatol 76:789–797. https://doi.org/10.1007/s00393-016-0172-5

    Article  CAS  PubMed  Google Scholar 

  28. LeRoy EC, Black C, Fleischmajer R, Jablonska S, Krieg T, Medsger TA Jr, Rowell N, Wollheim F (1988) Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 15:202–205

    CAS  PubMed  Google Scholar 

  29. Liu M, Liu F (2014) Regulation of adiponectin multimerization, signaling and function. Best Pract Res Clin Endocrinol Metab 28:25–31. https://doi.org/10.1016/j.beem.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  30. Liu Y, Vu V, Sweeney G (2019) Examining the potential of developing and implementing use of adiponectin-targeted therapeutics for metabolic and cardiovascular diseases. Front Endocrinol (Lausanne) 10:842. https://doi.org/10.3389/fendo.2019.00842

    Article  CAS  Google Scholar 

  31. Maenhaut N, Van de Voorde J (2011) Regulation of vascular tone by adipocytes. BMC Med 9:25. https://doi.org/10.1186/1741-7015-9-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marangoni RG, Korman BD, Wei J, Wood TA, Graham LV, Whitfield ML, Scherer PE, Tourtellotte WG, Varga J (2015) Myofibroblasts in murine cutaneous fibrosis originate from adiponectin-positive intradermal progenitors. Arthritis Rheumatol 67:1062–1073. https://doi.org/10.1002/art.38990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marangoni RG, Masui Y, Fang F, Korman B, Lord G, Lee J, Lakota K, Wei J, Scherer PE, Otvos L, Yamauchi T, Kubota N, Kadowaki T, Asano Y, Sato S, Tourtellotte WG, Varga J (2017) Adiponectin is an endogenous anti-fibrotic mediator and therapeutic target. Sci Rep 7:4397. https://doi.org/10.1038/s41598-017-04162-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maverakis E, Patel F, Kronenberg DG, Chung L, Fiorentino D, Allanore Y, Guiducci S, Hesselstrand R, Hummers LK, Duong C, Kahaleh B, Macgregor A, Matucci-Cerinic M, Wollheim FA, Mayes MD, Gershwin ME (2014) International consensus criteria for the diagnosis of Raynaud’s phenomenon. J Autoimmun 48–49:60–65. https://doi.org/10.1016/j.jaut.2014.01.020

    Article  PubMed  Google Scholar 

  35. Mostmans Y, Cutolo M, Giddelo C, Decuman S, Melsens K, Declercq H, Vandecasteele E, De Keyser F, Distler O, Gutermuth J, Smith V (2017) The role of endothelial cells in the vasculopathy of systemic sclerosis: A systematic review. Autoimmun Rev 16:774–786. https://doi.org/10.1016/j.autrev.2017.05.024

    Article  CAS  PubMed  Google Scholar 

  36. Navarini L, Margiotta DPE, Vadacca M, Afeltra A (2018) Leptin in autoimmune mechanisms of systemic rheumatic diseases. Cancer Lett 423:139–146. https://doi.org/10.1016/j.canlet.2018.03.011

    Article  CAS  PubMed  Google Scholar 

  37. Ohashi K, Ouchi N, Sato K, Higuchi A, Ishikawa TO, Herschman HR, Kihara S, Walsh K (2009) Adiponectin promotes revascularization of ischemic muscle through a cyclooxygenase 2-dependent mechanism. Mol Cell Biol 29:3487–3499. https://doi.org/10.1128/mcb.00126-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Olschewski H (2013) Prostacyclins. Handb Exp Pharmacol 218:177–198. https://doi.org/10.1007/978-3-642-38664-0_8

    Article  CAS  PubMed  Google Scholar 

  39. Park HK, Kwak MK, Kim HJ, Ahima RS (2017) Linking resistin, inflammation, and cardiometabolic diseases. Korean J Intern Med 32:239–247. https://doi.org/10.3904/kjim.2016.229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Perkins DJ, Richard K, Hansen AM, Lai W, Nallar S, Koller B, Vogel SN (2018) Autocrine-paracrine prostaglandin E2 signaling restricts TLR4 internalization and TRIF signaling. Nat Immunol 19:1309–1318. https://doi.org/10.1038/s41590-018-0243-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pluchart H, Khouri C, Blaise S, Roustit M, Cracowski JL (2017) Targeting the prostacyclin pathway: beyond pulmonary arterial hypertension. Trends Pharmacol Sci 38:512–523. https://doi.org/10.1016/j.tips.2017.03.003

    Article  CAS  PubMed  Google Scholar 

  42. Rahman MS (2019) Prostacyclin: a major prostaglandin in the regulation of adipose tissue development. J Cell Physiol 234:3254–3262. https://doi.org/10.1002/jcp.26932

    Article  CAS  PubMed  Google Scholar 

  43. Rahman MS, Khan F, Syeda PK, Nishimura K, Jisaka M, Nagaya T, Shono F, Yokota K (2014) Endogenous synthesis of prostacyclin was positively regulated during the maturation phase of cultured adipocytes. Cytotechnology 66:635–646. https://doi.org/10.1007/s10616-013-9616-9

    Article  CAS  PubMed  Google Scholar 

  44. Rahman MS, Syeda PK, Khan F, Nishimura K, Jisaka M, Nagaya T, Shono F, Yokota K (2013) Cultured preadipocytes undergoing stable transfection with cyclooxygenase-1 in the antisense direction accelerate adipogenesis during the maturation phase of adipocytes. Appl Biochem Biotechnol 171:128–144. https://doi.org/10.1007/s12010-013-0347-3

    Article  CAS  PubMed  Google Scholar 

  45. Reddoch KM, Montgomery RK, Rodriguez AC, Meledeo MA, Pidcoke HF, Ramasubramanian AK, Cap AP (2016) Endothelium-derived inhibitors efficiently attenuate the aggregation and adhesion responses of refrigerated platelets. Shock 45:220–227. https://doi.org/10.1097/shk.0000000000000493

    Article  CAS  PubMed  Google Scholar 

  46. Reid HM, Kinsella BT (2015) Prostacyclin receptors: transcriptional regulation and novel signalling mechanisms. Prostaglandins Other Lipid Mediat 121:70–82. https://doi.org/10.1016/j.prostaglandins.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  47. Sato H, Muraoka S, Kusunoki N, Masuoka S, Yamada S, Ogasawara H, Imai T, Akasaka Y, Tochigi N, Takahashi H, Tsuchiya K, Kawai S, Nanki T (2017) Resistin upregulates chemokine production by fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Res Ther 19:263. https://doi.org/10.1186/s13075-017-1472-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sawicka K, Krasowska D (2016) Adipokines in connective tissue diseases. Clin Exp Rheumatol 34:1101–1112

    PubMed  Google Scholar 

  49. Shen L, Evans IM, Souza D, Dreifaldt M, Dashwood MR, Vidya MA (2016) Adiponectin: an endothelium-derived vasoprotective factor? Curr Vasc Pharmacol 14:168–174. https://doi.org/10.2174/1570161114666151202210128

    Article  CAS  PubMed  Google Scholar 

  50. Smitka K, Maresova D (2015) Adipose tissue as an endocrine organ: an update on pro-inflammatory and anti-inflammatory microenvironment. Prague Med Rep 116:87–111. https://doi.org/10.14712/23362936.2015.49

    Article  PubMed  Google Scholar 

  51. Stochmal A, Czuwara J, Zaremba M, Rudnicka L (2019) Altered serum level of metabolic and endothelial factors in patients with systemic sclerosis. Arch Dermatol Res. https://doi.org/10.1007/s00403-019-01993-y

    Article  PubMed  PubMed Central  Google Scholar 

  52. Suganami A, Fujino H, Okura I, Yanagisawa N, Sugiyama H, Regan JW, Tamura Y, Murayama T (2016) Human DP and EP2 prostanoid receptors take on distinct forms depending on the diverse binding of different ligands. FEBS J 283:3931–3940. https://doi.org/10.1111/febs.13899

    Article  CAS  PubMed  Google Scholar 

  53. Tanabe H, Fujii Y, Okada-Iwabu M, Iwabu M, Nakamura Y, Hosaka T, Motoyama K, Ikeda M, Wakiyama M, Terada T, Ohsawa N, Hato M, Ogasawara S, Hino T, Murata T, Iwata S, Hirata K, Kawano Y, Yamamoto M, Kimura-Someya T, Shirouzu M, Yamauchi T, Kadowaki T, Yokoyama S (2015) Crystal structures of the human adiponectin receptors. Nature 520:312–316. https://doi.org/10.1038/nature14301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Torre-Villalvazo I, Bunt AE, Aleman G, Marquez-Mota CC, Diaz-Villasenor A, Noriega LG, Estrada I, Figueroa-Juarez E, Tovar-Palacio C, Rodriguez-Lopez LA, Lopez-Romero P, Torres N, Tovar AR (2018) Adiponectin synthesis and secretion by subcutaneous adipose tissue is impaired during obesity by endoplasmic reticulum stress. J Cell Biochem 119:5970–5984. https://doi.org/10.1002/jcb.26794

    Article  CAS  PubMed  Google Scholar 

  55. Trostchansky A, Moore-Carrasco R, Fuentes E (2019) Oxidative pathways of arachidonic acid as targets for regulation of platelet activation. Prostaglandins Other Lipid Mediat 145:106382. https://doi.org/10.1016/j.prostaglandins.2019.106382

    Article  CAS  PubMed  Google Scholar 

  56. van Andel M, Heijboer AC, Drent ML (2018) Adiponectin and Its Isoforms in Pathophysiology. Adv Clin Chem 85:115–147. https://doi.org/10.1016/bs.acc.2018.02.007

    Article  CAS  PubMed  Google Scholar 

  57. van den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A, Matucci-Cerinic M, Naden RP, Medsger TA Jr, Carreira PE, Riemekasten G, Clements PJ, Denton CP, Distler O, Allanore Y, Furst DE, Gabrielli A, Mayes MD, van Laar JM, Seibold JR, Czirjak L, Steen VD, Inanc M, Kowal-Bielecka O, Muller-Ladner U, Valentini G, Veale DJ, Vonk MC, Walker UA, Chung L, Collier DH, Csuka ME, Fessler BJ, Guiducci S, Herrick A, Hsu VM, Jimenez S, Kahaleh B, Merkel PA, Sierakowski S, Silver RM, Simms RW, Varga J, Pope JE (2013) 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum 65:2737–2747. https://doi.org/10.1002/art.38098

    Article  PubMed  PubMed Central  Google Scholar 

  58. Varga J, Marangoni RG (2017) Systemic sclerosis in 2016: Dermal white adipose tissue implicated in SSc pathogenesis. Nat Rev Rheumatol 13:71–72. https://doi.org/10.1038/nrrheum.2016.223

    Article  CAS  PubMed  Google Scholar 

  59. Varga J, Trojanowska M, Kuwana M (2017) Pathogenesis of systemic sclerosis: recent insights of molecular and cellular mechanisms and therapeutic opportunities. Journal of Scleroderma and Related Disorders 2:137–152. https://doi.org/10.5301/jsrd.5000249

    Article  Google Scholar 

  60. Verma S, Li SH, Wang CH, Fedak PW, Li RK, Weisel RD, Mickle DA (2003) Resistin promotes endothelial cell activation: further evidence of adipokine-endothelial interaction. Circulation 108:736–740. https://doi.org/10.1161/01.CIR.0000084503.91330.49

    Article  CAS  PubMed  Google Scholar 

  61. Wang JH, Yuan LJ, Zhong ZM, Wen ZS, Deng JM, Liang RX, Zheng M (2014) The anticoagulant effect of PGI2S and tPA in transgenic umbilical vein endothelial cells is linked to up-regulation of PKA and PKC. Int J Mol Sci 15:2826–2839. https://doi.org/10.3390/ijms15022826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang ZV, Scherer PE (2016) Adiponectin, the past two decades. J Mol Cell Biol 8:93–100. https://doi.org/10.1093/jmcb/mjw011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wharton J, Davie N, Upton PD, Yacoub MH, Polak JM, Morrell NW (2000) Prostacyclin analogues differentially inhibit growth of distal and proximal human pulmonary artery smooth muscle cells. Circulation 102:3130–3136. https://doi.org/10.1161/01.cir.102.25.3130

    Article  CAS  PubMed  Google Scholar 

  64. Zhao JH, Huang XL, Duan Y, Wang YJ, Chen SY, Wang J (2017) Serum adipokines levels in patients with systemic sclerosis: a meta-analysis. Mod Rheumatol 27:298–305. https://doi.org/10.1080/14397595.2016.1193106

    Article  CAS  PubMed  Google Scholar 

  65. Zolkiewicz J, Stochmal A, Rudnicka L (2019) The role of adipokines in systemic sclerosis: a missing link? Arch Dermatol Res 311:251–263. https://doi.org/10.1007/s00403-019-01893-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was carried out thanks to the financial support from Medical University of Warsaw, Poland (1M4/N/19/19).

Funding

This study was funded by Medical University of Warsaw, Poland (1M4/N/19/19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Rudnicka.

Ethics declarations

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional research committee (Ethics Committee of Medical University of Warsaw, approval of study protocol number KB/134/2018) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individuals included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stochmal, A., Czuwara, J., Zaremba, M. et al. Epoprostenol up-regulates serum adiponectin level in patients with systemic sclerosis: therapeutic implications. Arch Dermatol Res 313, 783–791 (2021). https://doi.org/10.1007/s00403-020-02172-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-020-02172-0

Keywords

Navigation