Abstract
Introduction
Adiponectin, resistin and leptin belong to adipokines, a group of molecules secreted mainly by the adipose tissue, which impaired expression may be a missing link between various manifestations of systemic sclerosis. Adiponectin, which is also released in small amounts by the endothelium, possesses anti-inflammatory, anti-fibrotic and protective against endothelial injury properties. Both leptin and resistin exhibit features which are contradictory to adiponectin, as they trigger inflammation and the activation of skin fibroblasts. Epoprostenol is a prostaglandin analogue with powerful vasodilator activity and inhibitory effect on platelet aggregation. The aim of the study was to evaluate whether epoprostenol may have an effect on serum adipokine levels in patients with systemic sclerosis.
Methods
A total of 27 patients were included in the study and received epoprostenol intravenously (25 µg of per day for 3 consecutive days). Serum concentrations of total adiponectin, resistin and leptin were assessed with enzyme-linked immunosorbent essay (R&D Systems, Minneapolis, MN, USA).
Results
In all SSc patients, the basal level of adiponectin was significantly lower compared to healthy controls (mean 6.00 \(\pm \) 2.81 μg/ml vs. 8.8 \(\pm \) 4.3 μg/ml, p = 0.02) and basal level of resistin (mean 11.12 \(\pm \) 3.36 ng/ml vs. 8.54 \(\pm \) 3.07 ng/ml p = 0.02) was significantly higher than in the control group. The serum concentration of adiponectin increased significantly after treatment with epoprostenol (6.00 \(\pm \) 2.81 μg/ml vs 9.29 \(\pm \) 6.05 μg/ml; P = 0.002). The level of resistin and leptin remained unchanged.
Conclusion
Epoprostenol infusions up-regulate the serum concentration of adiponectin in patients with systemic sclerosis. In our opinion, future studies on treatments in systemic sclerosis should address the issue of their effect on adipokine metabolism.
Similar content being viewed by others
References
Achari AE, Jain SK (2017) Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci 18:1321. https://doi.org/10.3390/ijms18061321
Arakawa H, Jinnin M, Muchemwa FC, Makino T, Kajihara I, Makino K, Honda N, Sakai K, Fukushima S, Ihn H (2011) Adiponectin expression is decreased in the involved skin and sera of diffuse cutaneous scleroderma patients. Exp Dermatol 20:764–766. https://doi.org/10.1111/j.1600-0625.2011.01310.x
Boydens C, Maenhaut N, Pauwels B, Decaluwe K, Van de Voorde J (2012) Adipose tissue as regulator of vascular tone. Curr Hypertens Rep 14:270–278. https://doi.org/10.1007/s11906-012-0259-6
Chu LY, Liou JY, Wu KK (2015) Prostacyclin protects vascular integrity via PPAR/14-3-3 pathway. Prostaglandins Other Lipid Mediat 118–119:19–27. https://doi.org/10.1016/j.prostaglandins.2015.04.006
Cruz JE, Ward A, Anthony S, Chang S, Bae HB, Hermes-DeSantis ER (2016) Evidence for the use of epoprostenol to treat raynaud’s phenomenon with or without digital ulcers. Ann Pharmacother 50:1060–1067. https://doi.org/10.1177/1060028016660324
Cutolo M, Smith V, Furst DE, Khanna D, Herrick AL (2017) Points to consider-Raynaud’s phenomenon in systemic sclerosis. Rheumatology (Oxford) 56:v45–v48. https://doi.org/10.1093/rheumatology/kex199
Dewachter C, Belhaj A, Rondelet B, Vercruyssen M, Schraufnagel DP, Remmelink M, Brimioulle S, Kerbaul F, Naeije R, Dewachter L (2015) Myocardial inflammation in experimental acute right ventricular failure: Effects of prostacyclin therapy. J Heart Lung Transplant 34:1334–1345. https://doi.org/10.1016/j.healun.2015.05.004
Fesus G, Dubrovska G, Gorzelniak K, Kluge R, Huang Y, Luft FC, Gollasch M (2007) Adiponectin is a novel humoral vasodilator. Cardiovasc Res 75:719–727. https://doi.org/10.1016/j.cardiores.2007.05.025
Francisco V, Ruiz-Fernandez C, Pino J, Mera A, Angel Gonzalez-Gay M, Gomez R, Lago F, Mobasheri A, Gualillo O (2019) Adipokines: linking metabolic syndrome, the immune system, and arthritic diseases. Biochem Pharmacol. https://doi.org/10.1016/j.bcp.2019.03.030
Freitas Lima LC, Braga VA, de Franca Silva MS, Cruz JC, Sousa Santos SH, de Oliveira Monteiro MM, Balarini CM (2015) Adipokines, diabetes and atherosclerosis: an inflammatory association. Front Physiol 6:304. https://doi.org/10.3389/fphys.2015.00304
Friedman J (2016) The long road to leptin. J Clin Invest 126:4727–4734. https://doi.org/10.1172/jci91578
Fruhbeck G, Catalan V, Rodriguez A, Ramirez B, Becerril S, Salvador J, Portincasa P, Colina I, Gomez-Ambrosi J (2017) Involvement of the leptin-adiponectin axis in inflammation and oxidative stress in the metabolic syndrome. Sci Rep 7:6619. https://doi.org/10.1038/s41598-017-06997-0
Gomart S, Gaudreau-Menard C, Jespers P, Dilek OG, Hupkens E, Hanthazi A, Naeije R, Melot C, Labranche N, Dewachter L, Mc Entee K (2017) Leptin-induced endothelium-independent vasoconstriction in thoracic aorta and pulmonary artery of spontaneously hypertensive rats: role of calcium channels and stores. PLoS ONE 12:e0169205. https://doi.org/10.1371/journal.pone.0169205
Grossini E, Farruggio S, Qoqaiche F, Raina G, Camillo L, Sigaudo L, Mary D, Surico N, Surico D (2016) Monomeric adiponectin modulates nitric oxide release and calcium movements in porcine aortic endothelial cells in normal/high glucose conditions. Life Sci 161:1–9. https://doi.org/10.1016/j.lfs.2016.07.010
Gryglewski RJ (2008) Prostacyclin among prostanoids. Pharmacol Rep 60:3–11
Herrick AL (2017) Therapeutic implications from the pathogenesis of Raynaud’s phenomenon. Expert Rev Clin Immunol 13:723–735. https://doi.org/10.1080/1744666x.2017.1279052
Jamroz-Wisniewska A, Gertler A, Solomon G, Wood ME, Whiteman M, Beltowski J (2014) Leptin-induced endothelium-dependent vasorelaxation of peripheral arteries in lean and obese rats: role of nitric oxide and hydrogen sulfide. PLoS ONE 9:e86744. https://doi.org/10.1371/journal.pone.0086744
Katusic ZS, Santhanam AV, He T (2012) Vascular effects of prostacyclin: does activation of PPARdelta play a role? Trends Pharmacol Sci 33:559–564. https://doi.org/10.1016/j.tips.2012.05.005
Knobler R, Moinzadeh P, Hunzelmann N, Kreuter A, Cozzio A, Mouthon L, Cutolo M, Rongioletti F, Denton CP, Rudnicka L, Frasin LA, Smith V, Gabrielli A, Aberer E, Bagot M, Bali G, Bouaziz J, Braae Olesen A, Foeldvari I, Frances C, Jalili A, Just U, Kahari V, Karpati S, Kofoed K, Krasowska D, Olszewska M, Orteu C, Panelius J, Parodi A, Petit A, Quaglino P, Ranki A, Sanchez Schmidt JM, Seneschal J, Skrok A, Sticherling M, Sunderkotter C, Taieb A, Tanew A, Wolf P, Worm M, Wutte NJ, Krieg T (2017) European Dermatology Forum S1-guideline on the diagnosis and treatment of sclerosing diseases of the skin, part 1: localized scleroderma, systemic sclerosis and overlap syndromes. J Eur Acad Dermatol Venereol 31:1401–1424. doi:https://doi.org/10.1111/jdv.14458
Kobayashi K, Omori K, Murata T (2018) Role of prostaglandins in tumor microenvironment. Cancer Metastasis Rev 37:347–354. https://doi.org/10.1007/s10555-018-9740-2
Korman B (2019) Evolving insights into the cellular and molecular pathogenesis of fibrosis in systemic sclerosis. Transl Res. https://doi.org/10.1016/j.trsl.2019.02.010
Kowal-Bielecka O, Fransen J, Avouac J, Becker M, Kulak A, Allanore Y, Distler O, Clements P, Cutolo M, Czirjak L, Damjanov N, Del Galdo F, Denton CP, Distler JHW, Foeldvari I, Figelstone K, Frerix M, Furst DE, Guiducci S, Hunzelmann N, Khanna D, Matucci-Cerinic M, Herrick AL, van den Hoogen F, van Laar JM, Riemekasten G, Silver R, Smith V, Sulli A, Tarner I, Tyndall A, Welling J, Wigley F, Valentini G, Walker UA, Zulian F, Muller-Ladner U (2017) Update of EULAR recommendations for the treatment of systemic sclerosis. Ann Rheum Dis 76:1327–1339. https://doi.org/10.1136/annrheumdis-2016-209909
Krasowska D, Rudnicka L, Dańczak-Pazdrowska A, Chodorowska G, Woźniacka A, Lis-Święty A, Czuwara J, Maj J, Majewski S, Sysa-Jędrzejowska A, Wojas-Pelc A (2017) Systemic sclerosis—diagnostic and therapeutic recommendations of the Polish Dermatological Society. Part 2: treatment. Przegla̧d Dermatologiczny 104:583–596. doi:https://doi.org/10.5114/dr.2017.71831
La Cava A (2017) Leptin in inflammation and autoimmunity. Cytokine 98:51–58. https://doi.org/10.1016/j.cyto.2016.10.011
Lacy SH, Woeller CF, Thatcher TH, Pollock SJ, Small EM, Sime PJ, Phipps RP (2019) Activated human lung fibroblasts produce extracellular vesicles with antifibrotic prostaglandins. Am J Respir Cell Mol Biol 60:269–278. https://doi.org/10.1165/rcmb.2017-0248OC
Lee M, Lee E, Jin SH, Ahn S, Kim SO, Kim J, Choi D, Lim KM, Lee ST, Noh M (2018) Leptin regulates the pro-inflammatory response in human epidermal keratinocytes. Arch Dermatol Res 310:351–362. https://doi.org/10.1007/s00403-018-1821-0
Lee YH, Song GG (2017) Meta-analysis of circulating adiponectin, leptin, and resistin levels in systemic sclerosis. Z Rheumatol 76:789–797. https://doi.org/10.1007/s00393-016-0172-5
LeRoy EC, Black C, Fleischmajer R, Jablonska S, Krieg T, Medsger TA Jr, Rowell N, Wollheim F (1988) Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 15:202–205
Liu M, Liu F (2014) Regulation of adiponectin multimerization, signaling and function. Best Pract Res Clin Endocrinol Metab 28:25–31. https://doi.org/10.1016/j.beem.2013.06.003
Liu Y, Vu V, Sweeney G (2019) Examining the potential of developing and implementing use of adiponectin-targeted therapeutics for metabolic and cardiovascular diseases. Front Endocrinol (Lausanne) 10:842. https://doi.org/10.3389/fendo.2019.00842
Maenhaut N, Van de Voorde J (2011) Regulation of vascular tone by adipocytes. BMC Med 9:25. https://doi.org/10.1186/1741-7015-9-25
Marangoni RG, Korman BD, Wei J, Wood TA, Graham LV, Whitfield ML, Scherer PE, Tourtellotte WG, Varga J (2015) Myofibroblasts in murine cutaneous fibrosis originate from adiponectin-positive intradermal progenitors. Arthritis Rheumatol 67:1062–1073. https://doi.org/10.1002/art.38990
Marangoni RG, Masui Y, Fang F, Korman B, Lord G, Lee J, Lakota K, Wei J, Scherer PE, Otvos L, Yamauchi T, Kubota N, Kadowaki T, Asano Y, Sato S, Tourtellotte WG, Varga J (2017) Adiponectin is an endogenous anti-fibrotic mediator and therapeutic target. Sci Rep 7:4397. https://doi.org/10.1038/s41598-017-04162-1
Maverakis E, Patel F, Kronenberg DG, Chung L, Fiorentino D, Allanore Y, Guiducci S, Hesselstrand R, Hummers LK, Duong C, Kahaleh B, Macgregor A, Matucci-Cerinic M, Wollheim FA, Mayes MD, Gershwin ME (2014) International consensus criteria for the diagnosis of Raynaud’s phenomenon. J Autoimmun 48–49:60–65. https://doi.org/10.1016/j.jaut.2014.01.020
Mostmans Y, Cutolo M, Giddelo C, Decuman S, Melsens K, Declercq H, Vandecasteele E, De Keyser F, Distler O, Gutermuth J, Smith V (2017) The role of endothelial cells in the vasculopathy of systemic sclerosis: A systematic review. Autoimmun Rev 16:774–786. https://doi.org/10.1016/j.autrev.2017.05.024
Navarini L, Margiotta DPE, Vadacca M, Afeltra A (2018) Leptin in autoimmune mechanisms of systemic rheumatic diseases. Cancer Lett 423:139–146. https://doi.org/10.1016/j.canlet.2018.03.011
Ohashi K, Ouchi N, Sato K, Higuchi A, Ishikawa TO, Herschman HR, Kihara S, Walsh K (2009) Adiponectin promotes revascularization of ischemic muscle through a cyclooxygenase 2-dependent mechanism. Mol Cell Biol 29:3487–3499. https://doi.org/10.1128/mcb.00126-09
Olschewski H (2013) Prostacyclins. Handb Exp Pharmacol 218:177–198. https://doi.org/10.1007/978-3-642-38664-0_8
Park HK, Kwak MK, Kim HJ, Ahima RS (2017) Linking resistin, inflammation, and cardiometabolic diseases. Korean J Intern Med 32:239–247. https://doi.org/10.3904/kjim.2016.229
Perkins DJ, Richard K, Hansen AM, Lai W, Nallar S, Koller B, Vogel SN (2018) Autocrine-paracrine prostaglandin E2 signaling restricts TLR4 internalization and TRIF signaling. Nat Immunol 19:1309–1318. https://doi.org/10.1038/s41590-018-0243-7
Pluchart H, Khouri C, Blaise S, Roustit M, Cracowski JL (2017) Targeting the prostacyclin pathway: beyond pulmonary arterial hypertension. Trends Pharmacol Sci 38:512–523. https://doi.org/10.1016/j.tips.2017.03.003
Rahman MS (2019) Prostacyclin: a major prostaglandin in the regulation of adipose tissue development. J Cell Physiol 234:3254–3262. https://doi.org/10.1002/jcp.26932
Rahman MS, Khan F, Syeda PK, Nishimura K, Jisaka M, Nagaya T, Shono F, Yokota K (2014) Endogenous synthesis of prostacyclin was positively regulated during the maturation phase of cultured adipocytes. Cytotechnology 66:635–646. https://doi.org/10.1007/s10616-013-9616-9
Rahman MS, Syeda PK, Khan F, Nishimura K, Jisaka M, Nagaya T, Shono F, Yokota K (2013) Cultured preadipocytes undergoing stable transfection with cyclooxygenase-1 in the antisense direction accelerate adipogenesis during the maturation phase of adipocytes. Appl Biochem Biotechnol 171:128–144. https://doi.org/10.1007/s12010-013-0347-3
Reddoch KM, Montgomery RK, Rodriguez AC, Meledeo MA, Pidcoke HF, Ramasubramanian AK, Cap AP (2016) Endothelium-derived inhibitors efficiently attenuate the aggregation and adhesion responses of refrigerated platelets. Shock 45:220–227. https://doi.org/10.1097/shk.0000000000000493
Reid HM, Kinsella BT (2015) Prostacyclin receptors: transcriptional regulation and novel signalling mechanisms. Prostaglandins Other Lipid Mediat 121:70–82. https://doi.org/10.1016/j.prostaglandins.2015.04.008
Sato H, Muraoka S, Kusunoki N, Masuoka S, Yamada S, Ogasawara H, Imai T, Akasaka Y, Tochigi N, Takahashi H, Tsuchiya K, Kawai S, Nanki T (2017) Resistin upregulates chemokine production by fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Res Ther 19:263. https://doi.org/10.1186/s13075-017-1472-0
Sawicka K, Krasowska D (2016) Adipokines in connective tissue diseases. Clin Exp Rheumatol 34:1101–1112
Shen L, Evans IM, Souza D, Dreifaldt M, Dashwood MR, Vidya MA (2016) Adiponectin: an endothelium-derived vasoprotective factor? Curr Vasc Pharmacol 14:168–174. https://doi.org/10.2174/1570161114666151202210128
Smitka K, Maresova D (2015) Adipose tissue as an endocrine organ: an update on pro-inflammatory and anti-inflammatory microenvironment. Prague Med Rep 116:87–111. https://doi.org/10.14712/23362936.2015.49
Stochmal A, Czuwara J, Zaremba M, Rudnicka L (2019) Altered serum level of metabolic and endothelial factors in patients with systemic sclerosis. Arch Dermatol Res. https://doi.org/10.1007/s00403-019-01993-y
Suganami A, Fujino H, Okura I, Yanagisawa N, Sugiyama H, Regan JW, Tamura Y, Murayama T (2016) Human DP and EP2 prostanoid receptors take on distinct forms depending on the diverse binding of different ligands. FEBS J 283:3931–3940. https://doi.org/10.1111/febs.13899
Tanabe H, Fujii Y, Okada-Iwabu M, Iwabu M, Nakamura Y, Hosaka T, Motoyama K, Ikeda M, Wakiyama M, Terada T, Ohsawa N, Hato M, Ogasawara S, Hino T, Murata T, Iwata S, Hirata K, Kawano Y, Yamamoto M, Kimura-Someya T, Shirouzu M, Yamauchi T, Kadowaki T, Yokoyama S (2015) Crystal structures of the human adiponectin receptors. Nature 520:312–316. https://doi.org/10.1038/nature14301
Torre-Villalvazo I, Bunt AE, Aleman G, Marquez-Mota CC, Diaz-Villasenor A, Noriega LG, Estrada I, Figueroa-Juarez E, Tovar-Palacio C, Rodriguez-Lopez LA, Lopez-Romero P, Torres N, Tovar AR (2018) Adiponectin synthesis and secretion by subcutaneous adipose tissue is impaired during obesity by endoplasmic reticulum stress. J Cell Biochem 119:5970–5984. https://doi.org/10.1002/jcb.26794
Trostchansky A, Moore-Carrasco R, Fuentes E (2019) Oxidative pathways of arachidonic acid as targets for regulation of platelet activation. Prostaglandins Other Lipid Mediat 145:106382. https://doi.org/10.1016/j.prostaglandins.2019.106382
van Andel M, Heijboer AC, Drent ML (2018) Adiponectin and Its Isoforms in Pathophysiology. Adv Clin Chem 85:115–147. https://doi.org/10.1016/bs.acc.2018.02.007
van den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A, Matucci-Cerinic M, Naden RP, Medsger TA Jr, Carreira PE, Riemekasten G, Clements PJ, Denton CP, Distler O, Allanore Y, Furst DE, Gabrielli A, Mayes MD, van Laar JM, Seibold JR, Czirjak L, Steen VD, Inanc M, Kowal-Bielecka O, Muller-Ladner U, Valentini G, Veale DJ, Vonk MC, Walker UA, Chung L, Collier DH, Csuka ME, Fessler BJ, Guiducci S, Herrick A, Hsu VM, Jimenez S, Kahaleh B, Merkel PA, Sierakowski S, Silver RM, Simms RW, Varga J, Pope JE (2013) 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum 65:2737–2747. https://doi.org/10.1002/art.38098
Varga J, Marangoni RG (2017) Systemic sclerosis in 2016: Dermal white adipose tissue implicated in SSc pathogenesis. Nat Rev Rheumatol 13:71–72. https://doi.org/10.1038/nrrheum.2016.223
Varga J, Trojanowska M, Kuwana M (2017) Pathogenesis of systemic sclerosis: recent insights of molecular and cellular mechanisms and therapeutic opportunities. Journal of Scleroderma and Related Disorders 2:137–152. https://doi.org/10.5301/jsrd.5000249
Verma S, Li SH, Wang CH, Fedak PW, Li RK, Weisel RD, Mickle DA (2003) Resistin promotes endothelial cell activation: further evidence of adipokine-endothelial interaction. Circulation 108:736–740. https://doi.org/10.1161/01.CIR.0000084503.91330.49
Wang JH, Yuan LJ, Zhong ZM, Wen ZS, Deng JM, Liang RX, Zheng M (2014) The anticoagulant effect of PGI2S and tPA in transgenic umbilical vein endothelial cells is linked to up-regulation of PKA and PKC. Int J Mol Sci 15:2826–2839. https://doi.org/10.3390/ijms15022826
Wang ZV, Scherer PE (2016) Adiponectin, the past two decades. J Mol Cell Biol 8:93–100. https://doi.org/10.1093/jmcb/mjw011
Wharton J, Davie N, Upton PD, Yacoub MH, Polak JM, Morrell NW (2000) Prostacyclin analogues differentially inhibit growth of distal and proximal human pulmonary artery smooth muscle cells. Circulation 102:3130–3136. https://doi.org/10.1161/01.cir.102.25.3130
Zhao JH, Huang XL, Duan Y, Wang YJ, Chen SY, Wang J (2017) Serum adipokines levels in patients with systemic sclerosis: a meta-analysis. Mod Rheumatol 27:298–305. https://doi.org/10.1080/14397595.2016.1193106
Zolkiewicz J, Stochmal A, Rudnicka L (2019) The role of adipokines in systemic sclerosis: a missing link? Arch Dermatol Res 311:251–263. https://doi.org/10.1007/s00403-019-01893-1
Acknowledgements
This research was carried out thanks to the financial support from Medical University of Warsaw, Poland (1M4/N/19/19).
Funding
This study was funded by Medical University of Warsaw, Poland (1M4/N/19/19).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Ethical approval
All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional research committee (Ethics Committee of Medical University of Warsaw, approval of study protocol number KB/134/2018) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.
Informed consent
Informed consent was obtained from all individuals included in the study.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Stochmal, A., Czuwara, J., Zaremba, M. et al. Epoprostenol up-regulates serum adiponectin level in patients with systemic sclerosis: therapeutic implications. Arch Dermatol Res 313, 783–791 (2021). https://doi.org/10.1007/s00403-020-02172-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00403-020-02172-0