Abstract
Though hair does not serve any crucial physiological function in modern humans, it plays an important role in our self-esteem. Androgenic baldness (androgenic alopecia) and circular/spot baldness (alopecia areata) are the most common forms of hair loss. Many active ingredients of synthetic origin are available for treatment; however, they have a number of limitations. Their effectiveness and safety are questionable and the amount of time needed to achieve the effect is both long and unclear. This has increased interest in finding an alternative approach against hair loss using preparations containing plants and/or their isolated active ingredients. A number of studies (mostly randomized, placebo-controlled) of plants and preparations made of plants have been performed to confirm their effectiveness in treating hair loss. The plants with the most evidence-based effect against alopecia are Curcuma aeruginosa (pink and blue ginger), Serenoa repens (palmetto), Cucurbita pepo (pumpkin), Trifolium pratense (red clover), and Panax ginseng (Chinese red ginseng). The assumed mechanism of action is predominately inhibition of 5α-reductase, with enhanced nutritional support and scalp blood circulation playing a role as well.
Similar content being viewed by others
References
Hunt N, McHale S (2005) The psychological impact of alopecia. BMJ 331:951–953. https://doi.org/10.1136/bmj.331.7522.951
Draelos ZK, Pugliese PT (2011) Physiology of the skin. Allured Business Media, Carol Stream
Zviak C (1986) Hair structure, function and physicochemical properties. The Science of Hair Carel. Marcel Dekker Inc, New York, pp 1–44
Stenn KS, Paus R (2001) Controls of hair follicle cycling. Physiol Rev 81:449–494. https://doi.org/10.1152/physrev.2001.81.1.449
Hardy MH (1992) The secret life of the hair follicle. Trends Genet 8:55–61. https://doi.org/10.1016/0168-9525(92)90350-D
Paus R, Cotsarelis G (1999) The biology of hair follicles. N Engl J Med 341:491–497. https://doi.org/10.1056/NEJM199908123410706
Sasaki GH (2019) Review of human hair follicle biology: dynamics of niches and stem cell regulation for possible therapeutic hair stimulation for plastic surgeons. Aesthetic Plast Surg 43:253–266. https://doi.org/10.1007/s00266-018-1248-1
Rook A (1965) Endocrine influences on hair growth. BMJ 1:609–614. https://doi.org/10.1136/bmj.1.5435.609
Trüeb RM (2002) Molecular mechanisms of androgenetic alopecia. Exp Gerontol 37:981–990. https://doi.org/10.1016/S0531-5565(02)00093-1
El-Domyati M, Attia S, Saleh F, Abdel-Wahab H (2009) Androgenetic alopecia in males: a histopathological and ultrastructural study. J Cosmet Dermatol 8:83–91. https://doi.org/10.1111/j.1473-2165.2009.00439.x
Hibino T, Nishiyama T (2004) Role of TGF-beta2 in the human hair cycle. J Dermatol Sci 35:9–18. https://doi.org/10.1016/j.jdermsci.2003.12.003
Li AG, Lu S-L, Han G et al (2006) Role of TGFβ in skin inflammation and carcinogenesis. Mol Carcinog 45:389–396. https://doi.org/10.1002/mc.20229
Huh S, Lee J, Jung E et al (2009) A cell-based system for screening hair growth-promoting agents. Arch Dermatol Res 301:381–385. https://doi.org/10.1007/s00403-009-0931-0
Inui S, Fukuzato Y, Nakajima T et al (2002) Androgen-inducible TGF-beta1 from balding dermal papilla cells inhibits epithelial cell growth: a clue to understand paradoxical effects of androgen on human hair growth. FASEB J 16:1967–1969. https://doi.org/10.1096/fj.02-0043fje
Thigpen AE, Davis DL, Milatovich A et al (1992) Molecular genetics of steroid 5 alpha-reductase 2 deficiency. J Clin Invest 90:799–809. https://doi.org/10.1172/JCI115954
Hoffmann R, Happle R (2000) Current understanding of androgenetic alopecia. Part I: Etiopathogenesis. Eur J Dermatol 10:319–327
Blumeyer A, Tosti A, Messenger A et al (2011) Evidence-based (S3) guideline for the treatment of androgenetic alopecia in women and in men. J Dtsch Dermatol Ges 9(Suppl 6):S1–57. https://doi.org/10.1111/j.1610-0379.2011.07802.x
Meidan VM, Touitou E (2001) Treatments for androgenetic alopecia and alopecia areata: current options and future prospects. Drugs 61:53–69. https://doi.org/10.2165/00003495-200161010-00006
Abell E, Munro DD (2006) Intralesional treatment of alopecia areata with triamcinolone acetonide by jet injector. Br J Dermatol 88:55–60. https://doi.org/10.1111/j.1365-2133.1973.tb06672.x
Kaushik R, Gupta D, Yadav R (2011) Alopecia: herbal remedies. Int J Pharm Sci Res 2:1631–1637. https://doi.org/10.13040/IJPSR.0975-8232.2(7).1631-37
Vishal L, Chandrakant S, Amit S et al (2017) Androgenic alopecia: current perspectives and treatments. World J Pharm Pharm Sci 6:641–653. https://doi.org/10.20959/wjpps20173-8678
Hajheydari Z, Jamshidi M, Akbari J, Mohammadpour R (2007) Combination of topical garlic gel and betamethasone valerate cream in the treatment of localized alopecia areata: a double-blind randomized controlled study. Indian J Dermatol Venereol Leprol 73:29–32. https://doi.org/10.4103/0378-6323.30648
Guercio V, Galeone C, Turati F, La Vecchia C (2014) Gastric cancer and allium vegetable intake: a critical review of the experimental and epidemiologic evidence. Nutr Cancer 66:757–773. https://doi.org/10.1080/01635581.2014.904911
Hill ND, Bunata K, Hebert AA (2015) Treatment of alopecia areata with squaric acid dibutylester. Clin Dermatol 33:300–304. https://doi.org/10.1016/j.clindermatol.2014.12.001
Al-Kayssi B (1991) Re-evaluation of conventional therapies in alopecia areata. University of Baghdad, College of Medicine
Lee SW, Trapnell BC, Rade JJ et al (1993) In vivo adenoviral vector-mediated gene transfer into balloon-injured rat carotid arteries. Circ Res 73:797–807. https://doi.org/10.1088/1751-8113/44/8/085201
Sharquie KE, Al-Obaidi HK (2002) Onion juice (Allium cepa L.), a new topical treatment for alopecia areata. J Dermatol 29:343–346. https://doi.org/10.1111/j.1346-8138.2002.tb00277.x
Sharangi AB (2009) Medicinal and therapeutic potentialities of tea (Camellia sinensis L.)—a review. Food Res Int 42:529–535. https://doi.org/10.1016/j.foodres.2009.01.007
Proniuk S, Liederer BM, Blanchard J (2002) Preformulation study of epigallocatechin gallate, a promising antioxidant for topical skin cancer prevention. J Pharm Sci 91:111–116. https://doi.org/10.1002/jps.10009
Hsu S, Bollag WB, Lewis J et al (2003) Green tea polyphenols induce differentiation and proliferation in epidermal keratinocytes. J Pharmacol Exp Ther 306:29–34. https://doi.org/10.1124/jpet.103.049734
Hiipakka RA, Zhang H-Z, Dai W et al (2002) Structure–activity relationships for inhibition of human 5α-reductases by polyphenols. Biochem Pharmacol 63:1165–1176. https://doi.org/10.1016/S0006-2952(02)00848-1
Kwon OS, Han JH, Yoo HG et al (2007) Human hair growth enhancement in vitro by green tea epigallocatechin-3-gallate (EGCG). Phytomedicine 14:551–555. https://doi.org/10.1016/j.phymed.2006.09.009
Esfandiari A, Kelly AP (2005) The effects of tea polyphenolic compounds on hair loss among rodents. J Natl Med Assoc 97:1165–1169
Zambo I (1988) Analytical standardization of peponen. In: Mediflora. pp 89, 6
Hong H, Kim C-S, Maeng S (2009) Effects of pumpkin seed oil and saw palmetto oil in Korean men with symptomatic benign prostatic hyperplasia. Nutr Res Pract 3:323–327. https://doi.org/10.4162/nrp.2009.3.4.323
Gossell-Williams M, Davis A, O’Connor N (2006) Inhibition of testosterone-induced hyperplasia of the prostate of Sprague-Dawley rats by pumpkin seed oil. J Med Food 9:284–286. https://doi.org/10.1089/jmf.2006.9.284
Carbin B-E, Larsson B, Lindahl O (1990) Treatment of Benign prostatic hyperplasia with phytosterols. Br J Urol 66:639–641. https://doi.org/10.1111/j.1464-410X.1990.tb07199.x
Cho YH, Lee SY, Jeong DW et al (2014) Effect of pumpkin seed oil on hair growth in men with androgenetic alopecia: a randomized, double-blind, placebo-controlled trial. Evidence Based Complement Altern Med 2014:7. https://doi.org/10.1155/2014/549721
Perry LM, Metzger J (2014) Medicinal plants of east and Southeast Asia: attributed properties and uses. MIT Press, Cambridge
Jantan I, Yassin MSM, Chin CB et al (2003) Antifungal activity of the essential oils of nine Zingiberaceae species. Pharm Biol 41:392–397. https://doi.org/10.1076/phbi.41.5.392.15941
Pumthong G, Asawanonda P, Varothai S et al (2012) Curcuma aeruginosa, a novel botanically derived 5α-reductase inhibitor in the treatment of male-pattern baldness: a multicenter, randomized, double-blind, placebo-controlled study. J Dermatolog Treat 23:385–392. https://doi.org/10.3109/09546634.2011.568470
Srivilai J, Nontakhot K, Nutuan T et al (2018) Sesquiterpene-Enriched Extract of Curcuma aeruginosa Roxb. Retards axillary hair growth: a randomised, placebo-controlled double-blind study. Skin Pharmacol Physiol 31:99–106. https://doi.org/10.1159/000486136
Dũng NX, Tuyêt NTB, Leclercq PA (1995) Characterization of the Leaf Oil of Curcuma aeruginosa Roxb. from Vietnam. J Essent Oil Res 7:657–659. https://doi.org/10.1080/10412905.1995.9700522
Makabe H, Maru N, Kuwabara A et al (2006) Anti-inflammatory sesquiterpenes from Curcuma zedoaria. Nat Prod Res 20:680–685. https://doi.org/10.1080/14786410500462900
Suphrom N, Pumthong G, Khorana N et al (2012) Anti-androgenic effect of sesquiterpenes isolated from the rhizomes of Curcuma aeruginosa Roxb. Fitoterapia 83:864–871. https://doi.org/10.1016/j.fitote.2012.03.017
Srivilai J, Phimnuan P, Jaisabai J et al (2017) Curcuma aeruginosa Roxb. essential oil slows hair-growth and lightens skin in axillae; a randomised, double blinded trial. Phytomedicine 25:29–38. https://doi.org/10.1016/j.phymed.2016.12.007
Srivilai J, Waranuch N, Tangsumranjit A et al (2018) Germacrone and sesquiterpene-enriched extracts from Curcuma aeruginosa Roxb. increase skin penetration of minoxidil, a hair growth promoter. Drug Deliv Transl Res 8:140–149. https://doi.org/10.1007/s13346-017-0447-7
Chang HK (1998) The pharmacology of Chinese Herbs, 2nd edn. CRC Press, Boca Raton
Matsuura H, Hirao Y, Yoshida S et al (1984) Study of red ginseng: new glucosides and a note on the occurrence of maltol. Chem Pharm Bull (Tokyo) 32:4674–4677. https://doi.org/10.1248/cpb.32.4674
Kitagawa I, Yoshikawa M, Yoshihara M et al (1983) Chemical Studies on Crude Drug Precession. I. On the Constituents of Ginseng Radix Rubra (1). Yakugaku Zasshi 103:612–622. https://doi.org/10.1248/yakushi1947.103.6_612
Kim J-H, Yi S-M, Choi J-E, Son S-W (2009) Study of the efficacy of Korean red ginseng in the treatment of androgenic alopecia. J Ginseng Res 33:223–228. https://doi.org/10.5142/JGR.2009.33.3.223
Attele AS, Wu JA, Yuan CS (1999) Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 58:1685–1693. https://doi.org/10.1016/S0006-2952(99)00212-9
He B-C, Gao J-L, Luo X et al (2011) Ginsenoside Rg3 inhibits colorectal tumor growth through the down-regulation of Wnt/β-catenin signaling. Int J Oncol. https://doi.org/10.3892/ijo.2010.858
Kang J-H, Song K-H, Woo J-K et al (2011) Ginsenoside Rp1 from Panax ginseng exhibits anti-cancer activity by down-regulation of the IGF-1R/Akt pathway in breast cancer cells. Plant Foods Hum Nutr 66:298–305. https://doi.org/10.1007/s11130-011-0242-4
Matsuda H, Yamazaki M, Asanuma Y, Kubo M (2003) Promotion of hair growth by ginseng radix on cultured mouse vibrissal hair follicles. Phyther Res 17:797–800. https://doi.org/10.1002/ptr.1241
Oh GN, Son SW (2012) Efficacy of Korean red ginseng in the treatment of alopecia areata. J Ginseng Res 36:391–395. https://doi.org/10.5142/jgr.2012.36.4.391
Park G-H, Park K, Cho H et al (2015) Red Ginseng extract promotes the hair growth in cultured human hair follicles. J Med Food 18:354–362. https://doi.org/10.1089/jmf.2013.3031
Kim SH, Jeong KS, Ryu SY, Kim TH (1998) Panax ginseng prevents apoptosis in hair follicles and accelerates recovery of hair medullary cells in irradiated mice. Vivo 12:219–222
Park E-K, Choo M-K, Han MJ, Kim D-H (2004) Ginsenoside Rh1 possesses antiallergic and anti-inflammatory activities. Int Arch Allergy Immunol 133:113–120. https://doi.org/10.1159/000076383
Rossi A, Mari E, Scarno M et al (2012) Comparitive effectiveness of finasteride vs Serenoa repens in male androgenetic alopecia: a two-year study. Int J Immunopathol Pharmacol 25:1167–1173. https://doi.org/10.1177/039463201202500435
Sinclair RD, Mallari RS, Tate B (2002) Sensitization to saw palmetto and minoxidil in separate topical extemporaneous treatments for androgenetic alopecia. Australas J Dermatol 43:311–312. https://doi.org/10.1046/j.1440-0960.2002.00620.x
Prager N, Bickett K, French N, Marcovici G (2002) A randomized, double-blind, placebo-controlled trial to determine the effectiveness of botanically derived inhibitors of 5-alpha-reductase in the treatment of androgenetic alopecia. J Altern Complement Med 8:143–152. https://doi.org/10.1089/acm.2002.8.143
Murugusundram S (2009) Serenoa repens: does it have any role in the management of androgenetic alopecia? J Cutan Aesthet Surg 2:31–32. https://doi.org/10.4103/0974-2077.53097
Kuroyanagi M, Arakawa T, Hirayama Y, Hayashi T (1999) Antibacterial and antiandrogen flavonoids from Sophora flavescens. J Nat Prod 62:1595–1599. https://doi.org/10.1021/np990051d
Yamahara J, Kobayashi G, Iwamoto M et al (1990) Vasodilatory active principles of Sophora flavescens root. J Ethnopharmacol 29:79–85. https://doi.org/10.1016/0378-8741(90)90100-8
Ko WG, Kang TH, Kim NY et al (2000) Lavandulylflavonoids: a new class of in vitro apoptogenic agents from Sophora flavescens. Toxicol In Vitro 14:429–433. https://doi.org/10.1016/S0887-2333(00)00041-2
Werner S, Smola H, Liao X et al (1994) The function of KGF in morphogenesis of epithelium and reepithelialization of wounds. Science 266:819–822. https://doi.org/10.1126/science.7973639
Philpott MP, Green MR, Kealey T (1990) Human hair growth in vitro. J Cell Sci 97(Pt 3):463–471
Roh S-S, Kim CD, Lee M-H et al (2002) The hair growth promoting effect of Sophora flavescens extract and its molecular regulation. J Dermatol Sci 30:43–49
Takahashi T, Ishino A, Arai T et al (2016) Improvement of androgenetic alopecia with topical Sophora flavescens Aiton extract, and identification of the two active compounds in the extract that stimulate proliferation of human hair keratinocytes. Clin Exp Dermatol 41:302–307. https://doi.org/10.1111/ced.12753
Gao X, Wang W, Wei S, Li W (2009) Review of pharmacological effects of Glycyrrhiza radix and its bioactive compounds. Zhongguo Zhong Yao Za Zhi 34:2695–2700. https://doi.org/10.1002/ptr.2709
Loing E, Lachance R, Ollier V, Hocquaux M (2013) A new strategy to modulate alopecia using a combination of two specific and unique ingredients. J Cosmet Sci 64:45–58
Schweiger ES, Boychenko O, Bernstein RM (2010) Update on the pathogenesis, genetics and medical treatment of patterned hair loss. J Drugs Dermatol 9:1412–1419
Hay IC, Jamieson M, Ormerod AD (1998) Randomized trial of aromatherapy. Successful treatment for alopecia areata. Arch Dermatol 134:1349–1352. https://doi.org/10.1001/archderm.135.5.602-b
Bureau JP, Ginouves P, Guilbaud J, Roux ME (2003) Essential oils and low-intensity electromagnetic pulses in the treatment of androgen-dependent alopecia. Adv Ther 20:220–229. https://doi.org/10.1007/BF02850093
Maddin WS, Bell PW, James JH (1990) The biological effects of a pulsed electrostatic field with specific reference to hair. Electrotrichogenesis. Int J Dermatol 29:446–450. https://doi.org/10.1111/j.1365-4362.1990.tb03837.x
Maddin WS, Amara I, Sollecito WA (1992) Electrotrichogenesis: further evidence of efficacy and safety on extended use. Int J Dermatol 31:878–880. https://doi.org/10.1111/j.1365-4362.1992.tb03550.x
Herman A, Herman AP (2015) Essential oils and their constituents as skin penetration enhancer for transdermal drug delivery: a review. J Pharm Pharmacol 67:473–485. https://doi.org/10.1111/jphp.12334
Boutekedjiret C, Bentahar F, Belabbes R, Bessiere JM (2003) Extraction of rosemary essential oil by steam distillation and hydrodistillation. Flavour Fragr J 18:481–484. https://doi.org/10.1002/ffj.1226
Al-Sereiti MR, Abu-Amer KM, Sen P (1999) Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Indian J Exp Biol 37:124–130. https://doi.org/10.1088/1751-8113/44/8/085201
Panahi Y, Taghizadeh M, Marzony ET, Sahebkar A (2015) Rosemary oil vs minoxidil 2% for the treatment of androgenetic alopecia: a randomized comparative trial. Skinmed 13:15–21
Vennat B, Bos MA, Pourrat A, Bastide P (1994) Procyanidins from tormentil: fractionation and study of the anti-radical activity towards superoxide anion. Biol Pharm Bull 17:1613–1615. https://doi.org/10.1248/bpb.17.1613
Haslam E (1996) Natural polyphenols (vegetable tannins) as drugs: possible modes of action. J Nat Prod 59:205–215. https://doi.org/10.1021/np960040+
Shoji O, Kunimatsu T, Kawakami N, Watanabe Y (2013) Highly selective hydroxylation of benzene to phenol by wild-type cytochrome P450BM3 assisted by decoy molecules. Angew Chem Int Ed Engl 52:6606–6610. https://doi.org/10.1002/anie.201300282
Takahashi T, Kamimura A, Kagoura M et al (2005) Investigation of the topical application of procyanidin oligomers from apples to identify their potential use as a hair-growing agent. J Cosmet Dermatol 4:245–249. https://doi.org/10.1111/j.1473-2165.2005.00199.x
Soma T, Tsuji Y, Hibino T (2002) Involvement of transforming growth factor-beta2 in catagen induction during the human hair cycle. J Invest Dermatol 118:993–997. https://doi.org/10.1046/j.1523-1747.2002.01746.x
Foitzik K, Lindner G, Mueller-Roever S et al (2000) Control of murine hair follicle regression (catagen) by TGF-beta1 in vivo. FASEB J 14:752–760. https://doi.org/10.1096/fasebj.14.5.752
Jaworsky C, Kligman AM, Murphy GF (1992) Characterization of inflammatory infiltrates in male pattern alopecia: implications for pathogenesis. Br J Dermatol 127:239–246. https://doi.org/10.1111/j.1365-2133.1992.tb00121.x
Sueki H, Stoudemayer T, Kligman AM, Murphy GF (1999) Quantitative and ultrastructural analysis of inflammatory infiltrates in male pattern alopecia. Acta Derm Venereol 79:347–350. https://doi.org/10.1080/000155599750010238
Takahashi T, Kamiya T, Yokoo Y (1998) Proanthocyanidins from grape seeds promote proliferation of mouse hair follicle cells in vitro and convert hair cycle in vivo. Acta Derm Venereol 78:428–432. https://doi.org/10.1080/000155598442719
Kamimura A, Takahashi T (2002) Procyanidin B-3, isolated from barley and identified as a hair-growth stimulant, has the potential to counteract inhibitory regulation by TGF-beta1. Exp Dermatol 11:532–541. https://doi.org/10.1034/j.1600-0625.2002.110606.x
Kamimura A, Takahashi T, Watanabe Y (2000) Investigation of topical application of procyanidin B-2 from apple to identify its potential use as a hair growing agent. Phytomedicine 7:529–536. https://doi.org/10.1016/S0944-7113(00)80040-9
Guo EL, Katta R (2017) Diet and hair loss: effects of nutrient deficiency and supplement use. Dermatol Pract Concept 7:1–10. https://doi.org/10.5826/dpc.0701a01
Smith RP, Coward RM, Kovac JR, Lipshultz LI (2013) The evidence for seasonal variations of testosterone in men. Maturitas 74:208–212. https://doi.org/10.1016/j.maturitas.2012.12.003
Funding
There were no sources of funding for this manuscript.
Author information
Authors and Affiliations
Contributions
A.Z.Š. and S.K. conceived of the review article idea. A.Z.Š. and N.P. selected and reviewed the literature. S.K. encouraged A.Z.Š. and N.P. to investigate the article’s topic and supervised the findings A.Z.Š. and N.P. made substantial contributions to the conception and design of the article. N.P. prepared an English translation of the article. N.K.G. and S.K. participated in drafting the article and revised it critically for important intellectual content. All authors have read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
Authors declare no conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zgonc Škulj, A., Poljšak, N., Kočevar Glavač, N. et al. Herbal preparations for the treatment of hair loss. Arch Dermatol Res 312, 395–406 (2020). https://doi.org/10.1007/s00403-019-02003-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00403-019-02003-x