Skip to main content

Advertisement

Log in

Tanshinol inhibits growth of malignant melanoma cells via regulating miR-1207-5p/CHPF pathway

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Tanshinol possesses anti-tumor activity in melanoma both in vitro and in vivo, and miR-1207-5p is involved in tumor progression in melanoma. However, whether miR-1207-5p can be affected by tanshinol treatment in melanoma is not clear. The expression levels of miR-1207-5p were detected by RT-qPCR. The validation of the direct target of miR-1207-5p was through dual-luciferase reporter assay and western blotting assay. The cell viability rate was determined using MTT assay and colony formation assay. The cell mobility was assessed using Transwell migration/invasion assay. Downregulation of miR-1207-5p was found in melanoma cell lines and tissues and was associated with tumor stages, presence of ulceration, lymph node metastasis, and poor overall survival rate of melanoma patients. Tanshinol treatment and miR-1207-5p overexpression suppressed melanoma cell growth and cell mobility. Chondroitin polymerizing factor (CHPF) is a direct target of miR-1207-5p. Tanshinol exerted anti-tumor activity to melanoma through the regulation of miR-1207-5p/CHPF signaling. Our study highlighted the potential therapeutic application of tanshinol and miR-1207-5p as a supplement to enhance the effect of the traditional cancer treatment methods against melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agostini M, Knight RA (2014) miR-34: from bench to bedside. Oncotarget 5:872–881. https://doi.org/10.18632/oncotarget.1825

    Article  PubMed  PubMed Central  Google Scholar 

  2. Almeida MI, Calin GA (2016) The miR-143/miR-145 cluster and the tumor microenvironment: unexpected roles. Genome Med 8:29. https://doi.org/10.1186/s13073-016-0284-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baroudjian B, Pages C, Lebbe C (2016) Melanoma, from diagnosis to treatment. Revue de l'infirmiere. https://doi.org/10.1016/j.revinf.2015.12.022

    Article  PubMed  Google Scholar 

  4. Bemis LT, Chen R, Amato CM, Classen EH, Robinson SE, Coffey DG, Erickson PF, Shellman YG, Robinson WA (2008) MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res 68:1362–1368. https://doi.org/10.1158/0008-5472.CAN-07-2912

    Article  CAS  PubMed  Google Scholar 

  5. Chen L, Lu MH, Zhang D, Hao NB, Fan YH, Wu YY, Wang SM, Xie R, Fang DC, Zhang H, Hu CJ, Yang SM (2014) miR-1207-5p and miR-1266 suppress gastric cancer growth and invasion by targeting telomerase reverse transcriptase. Cell Death Dis 5:e1034. https://doi.org/10.1038/cddis.2013.553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dang W, Qin Z, Fan S, Wen Q, Lu Y, Wang J, Zhang X, Wei L, He W, Ye Q, Yan Q, Li G, Ma J (2016) miR-1207-5p suppresses lung cancer growth and metastasis by targeting CSF1. Oncotarget 7:32421–32432. https://doi.org/10.18632/oncotarget.8718

    Article  PubMed  PubMed Central  Google Scholar 

  7. Domingues B, Lopes JM, Soares P, Populo H (2018) Melanoma treatment in review. ImmunoTargets Ther 7:35–49. https://doi.org/10.2147/ITT.S134842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fan YH, Xiao B, Lv SG, Ye MH, Zhu XG, Wu MJ (2017) Lentivirusmediated knockdown of chondroitin polymerizing factor inhibits glioma cell growth in vitro. Oncol Rep 38:1149–1155. https://doi.org/10.3892/or.2017.5731

    Article  CAS  PubMed  Google Scholar 

  9. Feng YH, Tsao CJ (2016) Emerging role of microRNA-21 in cancer. Biomed Rep 5:395–402. https://doi.org/10.3892/br.2016.747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Franke V, van Akkooi ACJ (2019) The extent of surgery for stage III melanoma: how much is appropriate? Lancet Oncol 20:e167–e174. https://doi.org/10.1016/S1470-2045(19)30099-3

    Article  PubMed  Google Scholar 

  11. Gajos-Michniewicz A, Czyz M (2019) Role of miRNAs in melanoma metastasis. Cancers. https://doi.org/10.3390/cancers11030326

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gao H, Sun W, Zhao J, Wu X, Lu JJ, Chen X, Xu QM, Khan IA, Yang S (2016) Tanshinones and diethyl blechnics with anti-inflammatory and anti-cancer activities from Salvia miltiorrhiza Bunge (Danshen). Sci Rep 6:33720. https://doi.org/10.1038/srep33720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gebert LFR, MacRae IJ (2019) Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 20:21–37. https://doi.org/10.1038/s41580-018-0045-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524. https://doi.org/10.1038/nrm3838

    Article  CAS  PubMed  Google Scholar 

  15. Hou X, Niu Z, Liu L, Guo Q, Li H, Yang X, Zhang X (2019) miR-1207-5p regulates the sensitivity of triple-negative breast cancer cells to Taxol treatment via the suppression of LZTS1 expression. Oncol Lett 17:990–998. https://doi.org/10.3892/ol.2018.9687

    Article  CAS  PubMed  Google Scholar 

  16. Hou XM, Zhang T, Da Z, Wu XA (2019) CHPF promotes lung adenocarcinoma proliferation and anti-apoptosis via the MAPK pathway. Pathol Res Pract. https://doi.org/10.1016/j.prp.2019.02.005

    Article  PubMed  Google Scholar 

  17. Hwang S, Mahadevan S, Qadir F, Hutchison IL, Costea DE, Neppelberg E, Liavaag PG, Waseem A, Teh MT (2013) Identification of FOXM1-induced epigenetic markers for head and neck squamous cell carcinomas. Cancer 119:4249–4258. https://doi.org/10.1002/cncr.28354

    Article  CAS  PubMed  Google Scholar 

  18. Kozar I, Margue C, Rothengatter S, Haan C, Kreis S (2019) Many ways to resistance: How melanoma cells evade targeted therapies. Biochim Biophys Acta 1871:313–322. https://doi.org/10.1016/j.bbcan.2019.02.002

    Article  CAS  Google Scholar 

  19. Krichevsky AM, Gabriely G (2009) miR-21: a small multi-faceted RNA. J Cell Mol Med 13:39–53. https://doi.org/10.1111/j.1582-4934.2008.00556.x

    Article  CAS  PubMed  Google Scholar 

  20. Leonardi GC, Falzone L, Salemi R, Zanghi A, Spandidos DA, McCubrey JA, Candido S, Libra M (2018) Cutaneous melanoma: from pathogenesis to therapy (Review). Int J Oncol 52:1071–1080. https://doi.org/10.3892/ijo.2018.4287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McCourt C, Dolan O, Gormley G (2014) Malignant melanoma: a pictorial review. Ulster Med J 83:103–110

    PubMed  PubMed Central  Google Scholar 

  22. O'Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 9:402. https://doi.org/10.3389/fendo.2018.00402

    Article  CAS  Google Scholar 

  23. Peng Y, Croce CM (2016) The role of MicroRNAs in human cancer. Signal Transduct Target Ther 1:15004. https://doi.org/10.1038/sigtrans.2015.4

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schadendorf D, van Akkooi ACJ, Berking C, Griewank KG, Gutzmer R, Hauschild A, Stang A, Roesch A, Ugurel S (2018) Melanoma Lancet 392:971–984. https://doi.org/10.1016/S0140-6736(18)31559-9

    Article  PubMed  Google Scholar 

  25. Shen ED, Liu B, Yu XS, Xiang ZF, Huang HY (2016) The effects of miR-1207-5p expression in peripheral blood on cisplatin-based chemosensitivity of primary gallbladder carcinoma. OncoTargets Ther 9:3633–3642. https://doi.org/10.2147/OTT.S101310

    Article  CAS  Google Scholar 

  26. Song P, Yin SC (2019) Long non-coding RNA 319 facilitates nasopharyngeal carcinoma carcinogenesis through regulation of miR-1207-5p/KLF12 axis. Gene 680:51–58. https://doi.org/10.1016/j.gene.2018.09.032

    Article  CAS  PubMed  Google Scholar 

  27. Tian XH, Wu JH (2013) Tanshinone derivatives: a patent review (January 2006–September 2012). Expert Opin Ther Pat 23:19–29. https://doi.org/10.1517/13543776.2013.736494

    Article  CAS  PubMed  Google Scholar 

  28. Wang X, Wu X (2017) The role of MicroRNA-1207-5p in colorectal cancer. Clin Lab 63:1875–1882. https://doi.org/10.7754/Clin.Lab.2017.170625

    Article  CAS  PubMed  Google Scholar 

  29. Wrobel S, Przybylo M, Stepien E (2019) The clinical trial landscape for melanoma therapies. J Clin Med. https://doi.org/10.3390/jcm8030368

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wu CY, Cherng JY, Yang YH, Lin CL, Kuan FC, Lin YY, Lin YS, Shu LH, Cheng YC, Liu HT, Lu MC, Lung J, Chen PC, Lin HK, Lee KD, Tsai YH (2017) Danshen improves survival of patients with advanced lung cancer and targeting the relationship between macrophages and lung cancer cells. Oncotarget 8:90925–90947. https://doi.org/10.18632/oncotarget.18767

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xu H, Hao YL, Xu LN, Chen L, Xu FW (2018) Tanshinone sensitized the antitumor effects of irradiation on laryngeal cancer via JNK pathway. Cancer Med 7:5187–5193. https://doi.org/10.1002/cam4.1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yan C, Chen Y, Kong W, Fu L, Liu Y, Yao Q, Yuan Y (2017) PVT1-derived miR-1207-5p promotes breast cancer cell growth by targeting STAT6. Cancer Sci 108:868–876. https://doi.org/10.1111/cas.13212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang X, Zang W, Xuan X, Wang Z, Liu Z, Wang J, Cui J, Zhao G (2015) miRNA-1207-5p is associated with cancer progression by targeting stomatin-like protein 2 in esophageal carcinoma. Int J Oncol 46:2163–2171. https://doi.org/10.3892/ijo.2015.2900

    Article  CAS  PubMed  Google Scholar 

  34. Zhang W, Lin Y, Liu X, He X, Zhang Y, Fu W, Yang Z, Yang P, Wang J, Hu K, Zhang X, Liu W, Yuan X, Jing H (2018) Prediction and prognostic significance of BCAR3 expression in patients with multiple myeloma. J Transl Med 16:363. https://doi.org/10.1186/s12967-018-1728-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang Y, Jiang P, Ye M, Kim SH, Jiang C, Lu J (2012) Tanshinones: sources, pharmacokinetics and anti-cancer activities. Int J Mol Sci 13:13621–13666. https://doi.org/10.3390/ijms131013621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhu P, Liu Z, Zhou J, Chen Y (2019) Tanshinol inhibits the growth, migration and invasion of hepatocellular carcinoma cells via regulating the PI3K-AKT signaling pathway. OncoTargets Ther 12:87–99. https://doi.org/10.2147/OTT.S185997

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diancai Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

All applicable international, national, and/or institutional guidelines for the care and use of human participants were followed.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 681 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, D. Tanshinol inhibits growth of malignant melanoma cells via regulating miR-1207-5p/CHPF pathway. Arch Dermatol Res 312, 373–383 (2020). https://doi.org/10.1007/s00403-019-01992-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-019-01992-z

Keywords

Navigation