Skip to main content

Advertisement

Log in

Blocking Wnt as a therapeutic target in mice model of skin cancer

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Wnt pathway plays an important role in controlling metabolism in cancer cells. It acts as positive modulator for both cell inflammation, through activation of NFκB, and fibrosis, through activation of TGF-β. Therefore, the aim of this study is to investigate the therapeutic effects of blocking Wnt pathway by IWP12 on skin cancer by studying its effects on skin cancer-induced inflammation and fibrosis in a mice model of skin cancer. Skin cancer was induced by application of 7,12-dimethylbenz[a]anthracene (DMBA) and croton oil on the dorsal skin of mice. Dorsal skin was removed for estimation of gene and protein expression of Wnt, β-catenin, SMAD, TGF-β, NFκB, TNF-α, IL-4 and IL-10. Part of the skin is stained with hematoxylin/eosin for assessment of cell structure. Treatment of mice with IWP12 completely blocked Wnt in skin cancer mice without affecting the control mice. Skin of tumorigenic mice showed marked skin hyperkeratosis, parakeratosis, acanthosis and dysplasia. Treatment with IWP12 markedly attenuated epidermal atypia and hyperplasia. In addition, IWP12 reduced expression of β-catenin, SMAD, TGF-β, NFκB and TNF-α associated with increase in the expression of IL-4 and IL-10. In conclusion, blocking Wnt production ameliorated skin cancer via blocking pro-inflammatory cytokines and enhancing the anti-inflammatory cytokines. Moreover, blocking Wnt attenuated skin cancer-induced activation of fibrosis pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Iqbal J, Abbasi BA, Ahmad R, Batool R, Mahmood T, Ali B, Khalil AT, Kanwal S, Shah SA, Alam MM, Bashir S, Badshah H, Munir A (2019) Potential phytochemicals in the fight against skin cancer: current landscape and future perspectives. Biomed Pharmacother 109:1381–1393

    Article  CAS  PubMed  Google Scholar 

  2. Dantonio PM, Klein MO, Freire M, Araujo CN, Chiacetti AC, Correa, RG (2018) Exploring major signaling cascades in melanomagenesis: a rationale route for targetted skin cancer therapy. Biosci Rep. https://doi.org/10.1042/BSR20180511

  3. An SM, Ding QP, Li LS (2013) Stem cell signaling as a target for novel drug discovery: recent progress in the WNT and hedgehog pathways. Acta Pharmacol Sin 34(6):777–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li J, Ji L, Chen J, Zhang W, Ye Z (2015) Wnt/beta-catenin signaling pathway in skin carcinogenesis and therapy. Biomed Res Int 2015:964842

    PubMed  PubMed Central  Google Scholar 

  5. Sherwood V (2015) WNT signaling: an emerging mediator of cancer cell metabolism? Mol Cell Biol 35(1):2–10

    Article  CAS  PubMed  Google Scholar 

  6. Tang X, Amar S (2016) Kavain inhibition of LPS-induced TNF-alpha via ERK/LITAF. Toxicol Res (Camb) 5(1):188–196

    Article  Google Scholar 

  7. Alyoussef A (2018) Blocking TGF-beta type 1 receptor partially reversed skin tissue damage in experimentally induced atopic dermatitis in mice. Cytokine 106:45–53

    Article  CAS  PubMed  Google Scholar 

  8. Alyoussef A, Taha M (2019) Antitumor activity of sulforaphane in mice model of skin cancer via blocking sulfatase-2. Exp Dermatol 28(1):28–34

    CAS  PubMed  Google Scholar 

  9. Rogers HW, Weinstock MA, Harris AR, Hinckley MR, Feldman SR, Fleischer AB, Coldiron BM (2010) Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch Dermatol 146(3):283–287

    Article  PubMed  Google Scholar 

  10. Berrocal A, Cabanas L, Espinosa E, Fernandez-de-Misa R, Martin-Algarra S, Martinez-Cedres JC, Rios-Buceta L, Rodriguez-Peralto JL (2014) Melanoma: diagnosis, staging, and treatment. Consensus group recommendations. Adv Ther 31(9):945–960

    Article  CAS  PubMed  Google Scholar 

  11. Li J, Fang R, Wang J, Deng L (2018) NOP14 inhibits melanoma proliferation and metastasis by regulating Wnt/beta-catenin signaling pathway. Braz J Med Biol Res 52(1):e7952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gao D, Chen HQ (2018) Specific knockdown of HOXB7 inhibits cutaneous squamous cell carcinoma cell migration and invasion while inducing apoptosis via the Wnt/beta-catenin signaling pathway. Am J Physiol Cell Physiol 315(5):C675–C686

    Article  CAS  PubMed  Google Scholar 

  13. Halifu Y, Liang JQ, Zeng XW, Ding Y, Zhang XY, Jin TB, Yakeya B, Abudu D, Zhou, YM, Liu XM, Hu FX, Chai L, Kang XJ (2016) Wnt1 and SFRP1 as potential prognostic factors and therapeutic targets in cutaneous squamous cell carcinoma. Genet Mol Res. https://doi.org/10.4238/gmr.15028187

  14. Fan G, Ye D, Zhu S, Xi J, Guo X, Qiao J, Wu Y, Jia W, Wang G, Fan G, Kang J (2017) RTL1 promotes melanoma proliferation by regulating Wnt/beta-catenin signalling. Oncotarget 8(62):106026–106037

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kaur A, Webster MR, Weeraratna AT (2016) In the Wnt-er of life: Wnt signalling in melanoma and ageing. Br J Cancer 115(11):1273–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Benoit YD, Guezguez B, Boyd AL, Bhatia M (2014) Molecular pathways: epigenetic modulation of Wnt-glycogen synthase kinase-3 signaling to target human cancer stem cells. Clin Cancer Res 20(21):5372–5378

    Article  CAS  PubMed  Google Scholar 

  17. Morgan RG, Ridsdale J, Tonks A, Darley RL (2014) Factors affecting the nuclear localization of beta-catenin in normal and malignant tissue. J Cell Biochem 115(8):1351–1361

    Article  CAS  PubMed  Google Scholar 

  18. Wang X, Enomoto A, Weng L, Mizutani Y, Abudureyimu S, Esaki N, Tsuyuki Y, Chen C, Mii S, Asai N, Haga H, Ishida S, Yokota K, Akiyama M, Takahashi M (2018) Girdin/GIV regulates collective cancer cell migration by controlling cell adhesion and cytoskeletal organization. Cancer Sci 109(11):3643–3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Massague J (2012) TGFbeta signalling in context. Nat Rev Mol Cell Biol 13(10):616–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Massague J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791

    Article  CAS  PubMed  Google Scholar 

  21. Zhou S (2011) TGF-beta regulates beta-catenin signaling and osteoblast differentiation in human mesenchymal stem cells. J Cell Biochem 112(6):1651–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mohammad KS, Javelaud D, Fournier PG, Niewolna M, McKenna CR, Peng XH, Duong V, Dunn LK, Mauviel A, Guise TA (2011) TGF-beta-RI kinase inhibitor SD-208 reduces the development and progression of melanoma bone metastases. Cancer Res 71(1):175–184

    Article  CAS  PubMed  Google Scholar 

  23. Rodeck U, Nishiyama T, Mauviel A (1999) Independent regulation of growth and SMAD-mediated transcription by transforming growth factor beta in human melanoma cells. Cancer Res 59(3):547–550

    CAS  PubMed  Google Scholar 

  24. Berking C, Takemoto R, Schaider H, Showe L, Satyamoorthy K, Robbins P, Herlyn M (2001) Transforming growth factor-beta1 increases survival of human melanoma through stroma remodeling. Cancer Res 61(22):8306–8316

    CAS  PubMed  Google Scholar 

  25. Yang L, Pang Y, Moses HL (2010) TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 31(6):220–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lacouture ME, Morris JC, Lawrence DP, Tan AR, Olencki TE, Shapiro GI, Dezube BJ, Berzofsky JA, Hsu FJ, Guitart J (2015) Cutaneous keratoacanthomas/squamous cell carcinomas associated with neutralization of transforming growth factor beta by the monoclonal antibody fresolimumab (GC1008). Cancer Immunol Immunother 64(4):437–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ferris RL (2015) Immunology and immunotherapy of head and neck cancer. J Clin Oncol 33(29):3293–3304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Amor NG, de Oliveira CE, Gasparoto TH, Vilas Boas VG, Perri G, Kaneno R, Lara VS, Garlet GP, da Silva JS, Martins GA, Hogaboam C, Cavassani KA, Campanelli AP (2018) ST2/IL-33 signaling promotes malignant development of experimental squamous cell carcinoma by decreasing NK cells cytotoxicity and modulating the intratumoral cell infiltrate. Oncotarget 9(56):30894–30904

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ghosh K, Capell BC (2016) The senescence-associated secretory phenotype: critical effector in skin cancer and aging. J Invest Dermatol 136(11):2133–2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bell S, Degitz K, Quirling M, Jilg N, Page S, Brand K (2003) Involvement of NF-kappaB signalling in skin physiology and disease. Cell Signal 15(1):1–7

    Article  CAS  PubMed  Google Scholar 

  31. Sanchez-Zauco N, Torres J, Gomez A, Camorlinga-Ponce M, Munoz-Perez L, Herrera-Goepfert R, Medrano-Guzman R, Giono-Cerezo S, Maldonado-Bernal C (2017) Circulating blood levels of IL-6, IFN-gamma, and IL-10 as potential diagnostic biomarkers in gastric cancer: a controlled study. BMC Cancer 17(1):384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Singh A, Singh A, Bauer SJ, Wheeler DL, Havighurst TC, Kim K, Verma AK (2016) Genetic deletion of TNFalpha inhibits ultraviolet radiation-induced development of cutaneous squamous cell carcinomas in PKCepsilon transgenic mice via inhibition of cell survival signals. Carcinogenesis 37(1):72–80

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Alyoussef.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alyoussef, A., Taha, M. Blocking Wnt as a therapeutic target in mice model of skin cancer. Arch Dermatol Res 311, 595–605 (2019). https://doi.org/10.1007/s00403-019-01939-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-019-01939-4

Keywords

Navigation