Archives of Dermatological Research

, Volume 310, Issue 6, pp 523–528 | Cite as

Up-regulation of HMGB1 and TLR4 in skin lesions of lichen planus

  • Gabriel Costa de Carvalho
  • Fabiana Yasumoto Araujo Hirata
  • Rosana Domingues
  • Cristina Adelaide Figueiredo
  • Mariana Colombini Zaniboni
  • Naiura Vieira Pereira
  • Mirian Nacagami Sotto
  • Valéria Aoki
  • Alberto José da Silva Duarte
  • Maria Notomi SatoEmail author
Concise Communication


Lichen planus (LP) is a chronic, mucocutaneous inflammatory disease of an unknown aetiology. The disease has been associated with certain viruses, and the factors such as DAMPs (damage-associated molecular patterns) and PAMPs (pathogen-associated molecular patterns) may also contribute to the inflammatory response in LP. HMGB1 (high mobility group box 1 protein) is one of the major DAMPs that induces inflammation and could trigger LP disease. The present study was aimed to examine TLR4, RAGE and HMGB1 production in epidermis or dermis by immunohistochemistry and the respective expression of these targets in the skin lesions of patients with LP. Moreover, we measured HMGB1 serum levels by ELISA. The results showed similar profile of expression by HMGB1 and TLR4, which are decreased at epidermis and up-regulated at dermis of skin lesions of LP patients that was sustained by intense cellular infiltration. RAGE expression was also increased in dermis of LP. Although there is increased RAGE protein levels, a decreased RAGE transcript levels was detected. Similar HMGB1 serum levels were detected in the LP and control groups. This study demonstrates that HMGB1 and TLR4 could contribute to the inflammatory LP process in skin.


Lichen planus HMGB1 RAGE TLR4 



This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (2011/20740-3), the Laboratório de Investigação Médica, Unidade 56 do Hospital das Clínicas da Faculdade de Medicina de São Paulo and Fundo de Apoio à Dermatologia de São Paulo.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

All experiments were approved by the local medical ethics committee prior to the study.

Informed consent

Written informed consent was obtained from all patients before inclusion in the study.


  1. 1.
    Abdulahad DA, Westra J, Bijzet J, Limburg PC, Kallenberg CG, Bijl M (2011) High mobility group box 1 (HMGB1) and anti-HMGB1 antibodies and their relation to disease characteristics in systemic lupus erythematosus. Arthritis Res Ther 13(3):R71CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Andersson U, Wang H, Palmblad K, Aveberger AC, Bloom O, Erlandsson-Harris H, Tracey KJ (2000) High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 192(4):565–570CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Barkauskaite V, Ek M, Popovic K, Harris HE, Wahren-Herlenius M, Nyberg F (2007) Translocation of the novel cytokine HMGB1 to the cytoplasm and extracellular space coincides with the peak of clinical activity in experimentally UV-induced lesions of cutaneous lupus erythematosus. Lupus 16(10):794–802CrossRefPubMedGoogle Scholar
  4. 4.
    Bartling B, Hofmann HS, Weigle B, Silber RE, Simm A (2005) Down-regulation of the receptor for advanced glycation end-products (RAGE) supports non-small cell lung carcinoma. Carcinogenesis 26(2):293–301CrossRefPubMedGoogle Scholar
  5. 5.
    Bergmann C, Strohbuecker L, Lotfi R, Sucker A, Joosten I, Koenen H, Körber A (2016) High mobility group box 1 is increased in the sera of psoriatic patients with disease progression. J Eur Acad Dermatol Venereol 30(3):435–441CrossRefPubMedGoogle Scholar
  6. 6.
    Bonaldi T, Talamo F, Scaffidi P, Ferrera D, Porto A, Bachi A, Bianchi ME (2003) Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. The EMBO journal 22(20):5551–5560CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Boyd AS, Neldner KH (1991) Lichen planus. J Am Acad Dermatol 25:593–619CrossRefPubMedGoogle Scholar
  8. 8.
    Chen T, Guo ZP, Li L, Wang L, Jia RZ, Cao N, Li MM (2013) Increased HMGB1 serum levels and altered HMGB1 expression in patients with psoriasis vulgaris. Arch Dermatol Res 305(3):263–267CrossRefPubMedGoogle Scholar
  9. 9.
    de Carvalho GC, Domingues R, de Sousa Nogueira MA, Calvielli Castelo Branco AC, Gomes Manfrere KC, Pereira NV, Aoki V, Sotto MN, Da Silva Duarte AJ, Sato MN (2016) Up-regulation of Proinflammatory Genes and Cytokines Induced by S100A8 in CD8 + T Cells in Lichen Planus. Acta dermato-venereologica 96(4):485–489. CrossRefPubMedGoogle Scholar
  10. 10.
    De Vries HJ, van Marle J, Teunissen MB, Picavet D, Zorgdrager F, Bos JD (2006) Lichen planus is associated with human herpesvirus type 7 replication and infiltration of plasmacytoid dendritic cells. Br J Dermatol 154(2):361–364CrossRefPubMedGoogle Scholar
  11. 11.
    Domingues R, de Carvalho GC, da Silva Oliveira LM, Futata Taniguchi E, Zimbres JM, Aoki V, da Silva Duarte AJ, Sato MN (2015) The dysfunctional innate immune response triggered by toll-like receptor activation is restored by TLR7/TLR8 and TLR9 ligands in cutaneous lichen planus. Br J Dermatol 172(1):48–55CrossRefPubMedGoogle Scholar
  12. 12.
    Einck L, Bustin M (1985) The intracellular distribution and function of the high mobility group chromosomal proteins. Exp Cell Res 156:295–310CrossRefPubMedGoogle Scholar
  13. 13.
    Englert JM, Hanford LE, Kaminski N, Tobolewski JM, Tan RJ, Fattman CL, Kasper M (2008) A role for the receptor for advanced glycation end products in idiopathic pulmonary fibrosis. Am J Pathol 172(3):583–591CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Guo HF, Liu SX, Zhang YJ, Liu QJ, Hao J, Gao LX (2011) High mobility group box 1 induces synoviocyte proliferation in rheumatoid arthritis by activating the signal transducer and activator transcription signal pathway. J Clin Exp Med 11(2):65–74CrossRefGoogle Scholar
  15. 15.
    Hudson BI, Carter AM, Harja E, Kalea AZ, Arriero M, Yang H, Schmidt AM (2008) Identification, classification, and expression of RAGE gene splice variants. FASEB J 22(5):1572–1580CrossRefPubMedGoogle Scholar
  16. 16.
    Huttunen HJ, Fages C, Kuja-Panula J, Ridley AJ, Rauvala H (2002) Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Can Res 62(16):4805–4811Google Scholar
  17. 17.
    Irvine C, Irvine F, Champion RH (1991) Long-term follow-up of lichenplanus. Acta Dermatol Venereol 71:242–244Google Scholar
  18. 18.
    Lee S, Kwak MS, Kim S, Shin JS (2014) The role of high mobility group box 1 in innate immunity. Yonsei med j 55(5):1165–1176CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lodi G, Giuliani M, Majorana A, Sardella A, Bez C, Demarosi F (2004) Lichen planus and hepatitis C virus: a multicentre study of patients with oral lesions and a systematic review. Br J Dermatol 151(6):1172–1181CrossRefPubMedGoogle Scholar
  21. 21.
    Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5(4):331–342CrossRefPubMedGoogle Scholar
  22. 22.
    Nogueira MA, Gavioli CF, Pereira NZ, de Carvalho GC, Domingues R, Aoki V, Sato MN (2015) Human endogenous retrovirus expression is inversely related with the up-regulation of interferon-inducible genes in the skin of patients with lichen planus. Arch Dermatol Res 307(3):259–264CrossRefPubMedGoogle Scholar
  23. 23.
    Palumbo R, Sampaolesi M, De Marchis F, Tonlorenzi R, Colombetti S, Mondino A, Bianchi ME (2004) Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation. J Cell Biol 164(3):441–449CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Popovic K, Ek M, Espinosa A, Padyukov L, Harris HE, Wahren-Herlenius M, Nyberg F (2005) Increased expression of the novel proinflammatory cytokine high mobility group box chromosomal protein 1 in skin lesions of patients with lupus erythematosus. Arthritis Rheum 52(11):3639–3645CrossRefPubMedGoogle Scholar
  25. 25.
    Semino C, Angelini G, Poggi A, Rubartelli A (2005) NK/iDC interaction results in IL-18 secretion by DCs at the synaptic cleft followed by NK cell activation and release of the DC maturation factor HMGB1. Blood 106(2):609–616CrossRefPubMedGoogle Scholar
  26. 26.
    Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W, Hofmann MA (2000) Blockade of RAGE–amphoterin signalling suppresses tumour growth and metastases. Nature 405(6784):354–360CrossRefPubMedGoogle Scholar
  27. 27.
    Taniguchi N, Kawahara KI, Yone K, Hashiguchi T, Yamakuchi M, Goto M, Nakajima T (2003) High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis Rheum 48(4):971–981CrossRefPubMedGoogle Scholar
  28. 28.
    Tateno T, Ueno S, Hiwatashi K, Matsumoto M, Okumura H, Setoyama T, Shinchi H (2009) Expression of receptor for advanced glycation end products (RAGE) is related to prognosis in patients with esophageal squamous cell carcinoma. Ann Surg Oncol 16(2):440–446CrossRefPubMedGoogle Scholar
  29. 29.
    Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Manogue KR (1999) HMGB-1 as a late mediator of endotoxin lethality in mice. Science 285(5425):248–251CrossRefPubMedGoogle Scholar
  30. 30.
    Yan SF, Ramasamy R, Schmidt AM (2009) Receptor for AGE (RAGE) and its ligands—cast into leading roles in diabetes and the inflammatory response. Int J Mol Med 87(3):235–247CrossRefGoogle Scholar
  31. 31.
    Youn JH, Shin JS (2006) Nucleocytoplasmic shuttling of HMGB1 is regulated by phosphorylation that redirects it toward secretion. J Immunol 177(11):7889–7897CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang W, Guo S, Li B, Liu L, Ge R, Cao T, Wang H, Gao T, Wang G, Li C (2016) Proinflammatory effect of high-mobility group protein B1 on keratinocytes: an autocrine mechanism underlying psoriasis development. J Pathol 241(3):392–404CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Gabriel Costa de Carvalho
    • 1
  • Fabiana Yasumoto Araujo Hirata
    • 1
  • Rosana Domingues
    • 1
  • Cristina Adelaide Figueiredo
    • 2
  • Mariana Colombini Zaniboni
    • 1
  • Naiura Vieira Pereira
    • 1
  • Mirian Nacagami Sotto
    • 3
  • Valéria Aoki
    • 1
  • Alberto José da Silva Duarte
    • 1
    • 3
  • Maria Notomi Sato
    • 1
    Email author
  1. 1.Laboratory of Dermatology and ImmunodeficienciesMedical School of the University of São PauloSão PauloBrazil
  2. 2.Institute of Adolfo Lutz, Respiratory Infectious DiseasesSão PauloBrazil
  3. 3.Department of PathologyUniversity of São Paulo Medical SchoolSão PauloBrazil

Personalised recommendations