Skip to main content

Advertisement

Log in

Inate immunity in rosacea. Langerhans cells, plasmacytoid dentritic cells, Toll-like receptors and inducible oxide nitric synthase (iNOS) expression in skin specimens: case-control study

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Rosacea is a chronic inflammatory condition with predominant facial involvement. Because of that, many patients sense that rosacea affects quality of life. The etiology of rosacea remains unknown. Recent studies have suggested that aberrant innate immunity is central to this disease. The aim of this study was to examine the presence of Langerhans cells, plasmacytoid dentritic cells (PDC), the expression of Toll-like receptors (TLR) and inducible oxide nitric synthase (iNOS) in skin of patients with rosacea, to highlight the participation of innate immunity in its pathogenesis. 28 biopsy specimens were taken from patients with clinical and histopathological findings of rosacea. Immunohistochemical demonstration of Langerhans cells (anti-CD1a antibody), PDC (anti-CD 123 antibody), TLR2, TLR4 and iNOS was performed in skin samples and compared with normal skin controls. The expression of Langerhans cells was lower in rosacea group than in control group. PDC were found in skin samples of rosacea as isolated cells and forming small clusters. Expression of TLR2, TLR4 and iNOS was higher in rosacea samples than in normal skin controls. This research demonstrates early and late stage components of innate immunity in specimens of rosacea ratifying the existence of an altered innate immunity in its pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agnoletti AF, DE Col E, Parodi A, Schiavetti I, Savarino V, Rebora A et al (2016) Etiopathogenesis of rosacea: a prospective study with a three-year follow-up. G Ital Dermatol Venereol 152(5):418–423

    PubMed  Google Scholar 

  2. Aksoy B, Altaykan-Hapa A, Egemen D, Karagoz F, Atakan N (2010) The impact of rosacea on quality of life: effects of demographic and clinical characteristics and various treatment modalities. Br J Dermatol 163:719–725

    Article  CAS  PubMed  Google Scholar 

  3. Bae YI, Yun S, Lee J, Kim S, Won YH, Lee S (2009) Clinical evaluation of 168 Korean patients with rosacea: the sun exposure correlates with the erythematotelangiectatic subtype. Ann Dermatol 21(3):243–249

    Article  PubMed  PubMed Central  Google Scholar 

  4. Barco D, Alomar A (2008) Rosacea. Actas Dermosifiliogr 99:244–256

    Article  CAS  PubMed  Google Scholar 

  5. Bene MC, Feuillard J, Jacob MC (2003) Plasmacytoid dendritic cells: from the plasmacytoid T-cell to 373 type 2 dendritic cells CD4+ CD56+ malignancies. Semin Hematol 40:257–266

    Article  CAS  PubMed  Google Scholar 

  6. Bieber T, Ring J, Braun-Falco O (1988) Comparison of different methods for enumeration of Langerhans cells in vertical cryosections of human skin. Br J Dermatol 118:385–392

    Article  CAS  PubMed  Google Scholar 

  7. Bogdan C, Rollinghoff M, Diefenbach A (1998) The role of nitric oxide in innate immunity. Immunol Rev 173:17–26

    Article  Google Scholar 

  8. Bruch-Gerharz D, Ruzicka T, Kolb-Bachofen V (1998) Nitric oxide in human skin: current status and future prospects. J Invest Dermatol 110:1–7

    Article  CAS  PubMed  Google Scholar 

  9. Cabibi D, Aragona F, Guarnotta C, Rodolico V, Zerilli M, Belmonte B et al (2011) Glut-1 expression and in situ CD1a/CD57 immunologic deficit in keratoacanthoma and squamous cell carcinoma of immunocompetent patients. Appl Immunohistochem Mol Morphol 19(3):239–245

    Article  CAS  PubMed  Google Scholar 

  10. Chan ED, Riches DW (2001) IFN-gamma LPS induction of iNOS is modulated by ERK, JNK/SAPK, and p38 (MAPK) in a mouse macrophage cell line. Am J Physiol Cell Physiol 280:C441–C450

    Article  CAS  PubMed  Google Scholar 

  11. Culp B, Scheinfeld N (2009) Rosacea: a review. PT 34(1):38–45

    Google Scholar 

  12. Diaz C, O’Callaghan CJ, Khan A, Ilchyshyn A (2003) Rosacea: a cutaneous marker of Helicobacter pylori infection? Results of a pilot study. Acta Derm Venereol 83(4):282–286

    Article  PubMed  Google Scholar 

  13. Elewski BE, Draelos Z, Dreno B, Jansen T, Layton A, Picardo M (2011) Rosacea—global diversity and optimized outcome: proposed international consensus from the Rosacea International Expert Group. J Eur Acad Dermatol Venereol 25(2):188–200

    Article  CAS  PubMed  Google Scholar 

  14. Elston DM (2010) Demodex mites: facts and controversies. Clin Dermatol 28(5):502–504

    Article  PubMed  Google Scholar 

  15. Farkas L, Beiske K, Lund-Johansen F, Brandtzaeg P, Jahnsen FL (2001) Plasmacytoid dendritic cells (natural interferon α/β-producing cells) accumulate in cutaneous lupus erythematosus lesions. Am J Pathol 159:237–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gravina A, Federico A, Ruocco E, Lo Schiavo A, Masarone M, Tuccillo C et al (2015) Helicobacter pylori infection but not small intestinal bacterial overgrowth may play a pathogenic role in rosácea. United Eur Gastroenterol 3(1):17–24

    Article  Google Scholar 

  17. Hernando-Harder AC, Booken N, Goerdt S, Singer MV, Harder H (2009) Helicobacter pylori infection and dermatologic diseases. Eur J Dermatol 19(5):431–444

    PubMed  Google Scholar 

  18. Kang SSW, Kauls LS, Gaspari AA (2006) Toll-like receptors: applications to dermatologic disease. J Am Acad Dermatol 54:951–983

    Article  PubMed  Google Scholar 

  19. Kawahara T, Teshima S, Oka A, Sugiyama T, Kishi K, Rokutan K (2001) Type 1 Helicobacter pylori lipopolysaccharide stimulates Toll-like receptor 4 and activates mitogen oxidase 1 in gastric pit cells. Infect Immun 69:4382–4389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koreck A, Pivarcsi A, Dobozy A, Kemény L (2003) The role of innate immunity in the pathogenesis of acne. Dermatology 206:96–105

    Article  CAS  PubMed  Google Scholar 

  21. Lacey N, Delaney S, Kavanagh K, Powell FC (2007) Mite-related bacterial antigens stimulate inflammatory cells in rosacea. Br J Dermatol 157(3):474–481

    Article  CAS  PubMed  Google Scholar 

  22. Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B et al (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449:564–569

    Article  CAS  PubMed  Google Scholar 

  23. Lowes MA, Chamian F, Abello MV, Fuentes-Duculan J, Lin SL, Nussbaum R et al (2005) Increase in TNF-alpha and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a). Proc Natl Acad Sci 102(52):19057–19062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Manicassamy S, Pulendran B (2009) Modulation of adaptive immunity with Toll-like receptors. Semin Immunol 21(4):185–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McNiff JM, Kaplan DH (2008) Plasmacytoid dendritic cells are present in cutaneous dermatomyositis lesions in a pattern distinct from lupus erythematosus. J Cutan Pathol 35:452–456

    Article  PubMed  Google Scholar 

  26. Merad M, Ginhoux F, Collin M (2008) Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol 8(12):935–947

    Article  CAS  PubMed  Google Scholar 

  27. Mizumoto N, Takashima A (2004) CD1a and langerin: acting as more than Langerhans cell markers. J Clin Invest 113:658–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Murphy KP (2012) An Introduction to immunobiology and innate immunity. In: Janeway’s immunobiology, 8th edn. Garland Science, New York, pp 1–125

    Google Scholar 

  29. Nandi J, Saud B, Zinkievich JM, Yang ZJ, Levine RA (2010) TNF-alpha modulates iNOS expression in an experimental rat model of indomethacin-induced jejunoileitis. Mol Cell Biochem 336(1–2):17–24

    Article  CAS  PubMed  Google Scholar 

  30. Nestle FO, Conrad C, Tun-Kyi A, Homey B, Gombert M, Boyman O et al (2005) Plasmacytoid predendritic cells initiate psoriasis through interferon-α production. J Exp Med 202:135–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pagliari C, Sotto MN (2003) Dendritic cells and pattern of cytokines in paracoccidioidomycosis skin lesions. Am J Dermatopathol 25(2):107–112

    Article  PubMed  Google Scholar 

  32. Robak E, Smolewski P, Wozniacka A, Sysa-Jedrzejowska A, Robak T (2004) Clinical significance of circulating dendritic cells in patients with systemic lupus erythematosus. Mediat Inflamm 13:171–180

    Article  CAS  Google Scholar 

  33. Robledo MA, Orduz M (2015) Hypothesis of demodicidosis rosacea flushing etiopathogenesis. Med Hypotheses 84(4):408–412

    Article  CAS  PubMed  Google Scholar 

  34. Rojo-García JM, Muñoz-Pérez MA, Escudero J, Camacho F et al (2000) Helicobacter pylori in rosacea and chronic urticaria. Acta Derm Venereol 80(2):156–157

    PubMed  Google Scholar 

  35. Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG (2003) TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19(1):59–70

    Article  CAS  PubMed  Google Scholar 

  36. Simões Quaresma JA, de Oliveira MF, Ribeiro Guimarães AC, de Brito EB, de Brito RB, Pagliari C et al (2009) CD1a and factor XIIIa immunohistochemistry in leprosy: a possible role of dendritic cells in the pathogenesis of Mycobacterium leprae infection. Am J Dermatopathol 31(6):527–531

    Article  PubMed  Google Scholar 

  37. Tüzün Y, Keskin S, Kote E (2010) The role of Helicobacter pylori infection in skin diseases: facts and controversies. Clin Dermatol 28(5):478–482

    Article  PubMed  Google Scholar 

  38. Uno K, Kato K, Atsumi T, Suzuki T, Yoshitake J, Morita H (2007) Toll-like receptor (TLR) 2 induced through TLR4 signaling initiated by Helicobacter pylori cooperatively amplifies iNOS induction in gastric epithelial cells. Am J Physiol Gastrointest Liver Physiol 293:G1004–G1012

    Article  CAS  PubMed  Google Scholar 

  39. Vermi W, Lonardi S, Morassi M, Rossini C, Tardanico R, Venturini M et al (2009) Cutaneous distribution of plasmacytoid dendritic cells in lupus erythematosus. Selective tropism at the site of epithelial apoptotic damage. Immunobiology 214:877–886

    Article  CAS  PubMed  Google Scholar 

  40. Wackernage A, Massone C, Hoefler G, Steinbauer E, Kerl H, Wolf P (2007) Plasmacytoid dendritic cells are absent in skin lesions of polymorphic light eruption. Photodermatol Photoimmunol Photomed 23:24–28

    Article  Google Scholar 

  41. Weller R (2003) Nitric oxide: a key mediator in cutaneous physiology. Clin Exp Dermatol 28:511–514

    Article  CAS  PubMed  Google Scholar 

  42. Wollenberg A, Wagner M, Gunther S, Towarowski A, Tuma E, Moderer M et al (2002) Plasmacytoid dendritic cells: a new cutaneous dendritic cell subset with distinct role in inflammatory skin diseases. J Invest Dermatol 119:1096–1102

    Article  CAS  PubMed  Google Scholar 

  43. Yamasaki K, Di Nardo A, Bardan A, Murakami M, Ohtake T, Coda A et al (2007) Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med 13:975–980

    Article  CAS  PubMed  Google Scholar 

  44. Yamasaki K, Gallo RL (2009) The molecular pathology of rosacea. J Dermatol Sci 55:77–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yamasaki K, Kanada K, Macleod DT, Borkowski AW, Morizane S, Nakatsuji T et al (2011) TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. J Invest dermatol 131:688–697

    Article  CAS  PubMed  Google Scholar 

  46. Zhao YE, Wu LP, Peng Y, Cheng H (2010) Retrospective analysis of the association between demodex infestation and rosacea. Arch Dermatol 146(8):896–902

    PubMed  Google Scholar 

Download references

Funding

Supported by Brazilian financial Grant from CAPES-PROAP (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Karina Alves Moura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The research ethics committee of the University of São Paulo Medical School approved the study protocol (approval number: 0122/09), that is attached as one of the files in this submission.

Informed consent

Informed consent was obtained from all individual participants included in the study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moura, A.K.A., Guedes, F., Rivitti-Machado, M.C. et al. Inate immunity in rosacea. Langerhans cells, plasmacytoid dentritic cells, Toll-like receptors and inducible oxide nitric synthase (iNOS) expression in skin specimens: case-control study. Arch Dermatol Res 310, 139–146 (2018). https://doi.org/10.1007/s00403-018-1806-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-018-1806-z

Keywords

Navigation