Abstract
Oral lichen planus (OLP) is a chronic inflammatory mucocutaneous disease with a potential malignant transformation, characterized by cytotoxic T cells against basal epithelial cells. MicroRNAs (MiRNAs) are short non-coding RNA that plays critical role in gene expression at post-transcriptional levels. Much evidence showed that miRNAs play an important role in regulating immune response and cancer development. The purpose of the present study was to compare the expression of miRNA 27b and miRNA 137 in tissues and saliva between OLP patients and controls by using RT-qPCR and to evaluate their use as biomarkers of disease activity and potential malignant transformation. Our results showed down expression of miRNA 27b and miRNA 137 in tissue and saliva of OLP patients compared to controls; among OLP subgroups, erosive-type miRNA 137 revealed the lowest level in tissue and saliva. In conclusion, alteration of miRNA 27b and miRNA 137 gene expression signify their use as biomarkers for diseases activity and tendency of malignant transformation, and down expression of miRNA 137 especially in erosive-type favors the use of saliva sample as a noninvasive method for monitoring a potential malignant transformation of OLP.
Similar content being viewed by others
References
Aghbari SM, Abushouk AI, Attia A, Elmaraezy. A, Menshawy. A, Ahmed MS, Elsaadany BA, Ahmed EM (2017) Malignant transformation of oral lichen planus and oral lichenoid lesions: a meta-analysis of 20095 patient data. Oral Oncol 68:92–102. https://doi.org/10.1016/j.oraloncology.2017.03.012
Akhtar N, Rasheed Z, Ramamurthy S, Anbazhagan AN, Voss FR, Haqqi TM (2010) MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum 62(5):1361–1371. https://doi.org/10.1002/art.27329
Arão TC, Guimarães ALS, de Paula AMB, Gomes CC, Gomez RS (2012) Increased miRNA-146a and miRNA-155 expressions in oral lichen planus. Arch Dermatol Res 304(5):371–375. https://doi.org/10.1007/s00403-011-1197-x
Bartel DP, Lee R, Feinbaum R (2004) MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116(2):281–297
Bombeccari GP, Guzzi G, Tettamanti M, Giannì AB, Baj A, Pallotti F, Spadari F (2011) Oral lichen planus and malignant transformation: a longitudinal cohort study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 112(3):328–334. https://doi.org/10.1016/j.tripleo.2011.04.009
Buck aMYH, Perot J, Chisholm M, Kumar DS, Cognat RIE, Marcinowski L, Tuddenham LEE (2010). Post-transcriptional regulation of miR-27 in murine cytomegalovirus infection. RNA 16(2):307–315. https://doi.org/10.1261/rna.1819210
Dai R, Ahmed S (2011) microRNA, a new paradigm for underestanding immunoregulation, inflamation an autoimmune diseases. Transl Res 157(4):163–179. https://doi.org/10.1016/j.trsl.2011.01.007
Dang J, Bian Y, Sun JY, Chen F, Dong G, Liu Q, Wang Q et al. (2013) MicroRNA-137 promoter methylation in oral lichen planus and oral squamous cell carcinoma. J Oral Pathol Med 42(4):315–321. https://doi.org/10.1111/jop.12012
Danielsson K, Ebrahimi M, Wahlin YB, Nylander K, Boldrup L (2012) Increased levels of COX-2 in oral lichen planus supports an autoimmune cause of the disease. J Eur Acad Dermatol Venereol 26(11):1415–1419. https://doi.org/10.1111/j.1468-3083.2011.04306.x
Danielsson K, Wahlin YB, Gu X, Boldrup L, Nylander K (2012) Altered expression of miR-21, miR-125b, and miR-203 indicates a role for these microRNAs in oral lichen planus. J Oral Pathol Med 41(1):90–95. https://doi.org/10.1111/j.1600-0714.2011.01084.x
Graham JR, Williams CMM, Yang Z (2014) MicroRNA-27b targets gremlin 1 to modulate fibrotic responses in pulmonary cells. J Cell Biochem 115(9):1539–1548. https://doi.org/10.1002/jcb.24809
Guerra EN, Acevedo AC, Leite AF, Gozal D, Chardin H, De Luca Canto G (2015) Diagnostic capability of salivary biomarkers in the assessment of head and neck cancer: a systematic review and meta-analysis. Oral Oncol 51(9):805–818. https://doi.org/10.1016/j.oraloncology.2015.06.010
Hildebrand J, Rütze M, Walz N, Gallinat S, Wenck H, Deppert W, Knott A (2011) A comprehensive analysis of microRNA expression during human keratinocyte differentiation in vitro and in vivo. J Invest Dermatol 131(1):20–29. https://doi.org/10.1038/jid.2010.268
Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G, Scheideler M et al. (2009) microRNA miR-27b impairs human adipocyte differentiation and targets PPAR gamma. Biochem Biophys Res Commun 390(2):247–251. https://doi.org/10.1016/j.bbrc.2009.09.098
Kozaki KI, Imoto I, Mogi S, Omura K, Inazawa J (2008) Exploration of tumor-suppressive MicroRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res 68(7):2094–2105. https://doi.org/10.1158/0008-5472.CAN-07-5194
Langevin SM, Stone RA, Bunker H, Grandis JR, Sobol RW (2010) MicroRNA-137 promoter methylation in oral rinses from patients with squamous cell carcinoma of the head and neck is associated with gender and body mass index. Carcinogenesis 31(5):864–870. https://doi.org/10.1093/carcin/bgq051
Liu G-X, Sun J-T, Yang M-X, Qi X-M, Shao Q-Q, Xie Q, Sun S-Z et al. (2011) OPN promotes survival of activated T cells by up-regulating CD44 in patients with oral lichen planus. Clin Immunol 138(3):291–298. https://doi.org/10.1016/j.clim.2010.12.007
Navazesh M (1993) Methods for collecting saliva. Ann N Y Acad Sci 694:72–77. https://doi.org/10.1111/j.1749-6632.1993.tb18343.x
Nylander E, Ebrahimi M, Wahlin YB, Boldrup L, Nylander K (2012) Changes in miRNA expression in sera and correlation to duration of disease in patients with multifocal mucosal lichen planus. J Oral Pathol Med 41(1):86–89. https://doi.org/10.1111/j.1600-0714.2011.01063.x
Pritchard CC, Cheng HH, Tewari M (2012) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13(5):358–369. https://doi.org/10.1038/nrg3198
Rad M, Hashemipoor MA, Mojtahedi A, Zarei MR, Chamani G, Kakoei S, Izadi N (2009). Correlation between clinical and histopathologic diagnoses of oral lichen planus based on modified WHO diagnostic criteria. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107(6):796–800. https://doi.org/10.1016/j.tripleo.2009.02.020
Rogler CE, LeVoci L, Ader T, Massimi A, Tchaikovskaya T, Norel R, Rogler LE (2009). MicroRNA-23b cluster microRNAs regulate transforming growth factor-beta/bone morphogenetic protein signaling and liver stem cell differentiation by targeting Smads. Hepatology, 50(2):575–584. https://doi.org/10.1002/hep.22982
Schwartz EI, Smilenov LB, Price MA, Osredkar T, Baker RA, Ghosh S, Kruman II (2007). Cell cycle activation in postmitotic neurons is essential for DNA repair. Cell Cycle 6(3):318–329. https://doi.org/10.4161/cc.6.3.3752
Smith AR, Marquez RT, Tsao W, Pathak S, Roy A, Ping J, Kristi L (2015) Tumor suppressive microRNA-137 negatively Musashi-1 and colorectal cancer progression regulates. Oncotarget 6(14):12558–12573. https://doi.org/10.18632/oncotarget.3726
Tao X-A, Li C-Y, Xia J, Yang X, Chen X-H, Jian Y-T, Cheng B (2009) Differential gene expression profiles of whole lesions from patients with oral lichen planus. J Oral Pathol Med 38(5):427–433. https://doi.org/10.1111/j.1600-0714.2009.00764.x
Wang J-M, Tao J, Chen D-D, Cai J-J, Irani K, Wang Q, Chen AF (2014) MicroRNA miR-27b rescues bone marrow-derived angiogenic cell function and accelerates wound healing in type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol 34(1):99–109. https://doi.org/10.1161/ATVBAHA.113.302104
Zhang W, Liu W, Zhou Y, Shen X, Wang Y, Tang G (2012) Altered microRNA expression profile with miR-27b down-regulation correlated with disease activity of oral lichen planus. Oral Dis 18(3):265–270. https://doi.org/10.1111/j.1601-0825.2011.01869.x
Acknowledgements
I would like to express my deepest appreciation to my professors and colleagues in Faculty of Oral and Dental Medicine and in Faculty of Medicine, Cairo University-Egypt.
Funding
The study was funded by personal resources.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
This article was approved by the Faculty of Oral and Dental Medicine Research Ethics committee, Cairo University in September 2013.
Informed consent
Following an explanation of the study as well as information about the sampling procedures, each subject signed a written informed consent form approved by the Faculty Research Ethics committee.
Rights and permissions
About this article
Cite this article
Aghbari, S.M.H., Gaafar, S.M., Shaker, O.G. et al. Evaluating the accuracy of microRNA27b and microRNA137 as biomarkers of activity and potential malignant transformation in oral lichen planus patients. Arch Dermatol Res 310, 209–220 (2018). https://doi.org/10.1007/s00403-018-1805-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00403-018-1805-0