Skip to main content

Advertisement

Log in

A possible implication of reduced levels of LIF, LIFR, and gp130 in vasculopathy related to systemic sclerosis

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Leukemia inhibitory factor (LIF) is a member of IL-6 family, which serves as a potent chemoattractant for neutrophils as well as a potent angiostatic factor. LIF has been implicated in various autoimmune inflammatory diseases, but its role still remains elusive in systemic sclerosis (SSc). Therefore, we investigated the potential role of LIF in the development of SSc by evaluating the clinical correlation of serum LIF levels, the expression of LIF and its receptors in skin samples, and in vitro experiments with human dermal microvascular endothelial cells. Serum LIF levels were significantly decreased in patients with SSc, especially in those with disease duration of < 1 year compared with healthy controls. As for clinical correlation, SSc patients with digital ulcers exhibited serum LIF levels significantly lower than those without. In immunohistochemistry, the expression of LIF and its receptors, LIF receptor and gp130, was remarkably decreased in dermal blood vessels of SSc lesional skin relative to those of healthy control skin. Furthermore, gene silencing of transcription factor Fli1, whose deficiency is involved in the development of SSc vasculopathy, suppressed the expression of LIF, LIF receptor, and gp130 and Fli1 bound to the promoters of those genes in human dermal microvascular endothelial cells. Collectively, these results suggest that decreased serum LIF levels may be associated with vasculopathy in SSc and that Fli1 deficiency may contribute to the inhibition of LIF-dependent biological effects on SSc endothelial cells by suppressing the expression of LIF, LIF receptor, and gp130.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abraham DJ, Krieg T, Distler J, Distler O (2009) Overview of pathogenesis of systemic sclerosis. Rheumatology (Oxford) 48(Suppl 3):iii3–iii7

    CAS  Google Scholar 

  2. Akamata K, Asano Y, Taniguchi T et al (2015) Increased expression of chemerin in endothelial cells due to Fli1 deficiency may contribute to the development of digital ulcers in systemic sclerosis. Rheumatology (Oxford) 54:1308–1316

    Article  CAS  Google Scholar 

  3. Asano Y, Czuwara J, Trojanowska M (2007) Transforming growth factor-β regulates DNA binding activity of transcription factor Fli1 by p300/CREB-binding protein-associated factor-dependent acetylation. J Biol Chem 282:34672–34683

    Article  CAS  PubMed  Google Scholar 

  4. Asano Y (2010) Future treatments in systemic sclerosis. J Dermatol 37:54–70

    Article  CAS  PubMed  Google Scholar 

  5. Asano Y, Stawski L, Hant F et al (2010) Endothelial Fli1 deficiency impairs vascular homeostasis: a role in scleroderma vasculopathy. Am J Pathol 176:1983–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Asano Y (2015) Epigenetic suppression of Fli1, a potential predisposing factor in the pathogenesis of systemic sclerosis. Int J Biochem Cell Biol 67:86–91

    Article  CAS  PubMed  Google Scholar 

  7. Asano Y, Sato S (2015) Vasculopathy in scleroderma. Semin Immunopathol 37:489–500

    Article  CAS  PubMed  Google Scholar 

  8. Ash J, McLeod DS, Lutty GA (2005) Transgenic expression of leukemia inhibitory factor (LIF) blocks normal vascular development but not pathological neovascularization in the eye. Mol Vis 11:298–308

    CAS  PubMed  Google Scholar 

  9. Chung SJ, Kwon YJ, Park MC, Park YB, Lee SK (2011) The correlation between increased serum concentrations of interleukin-6 family cytokines and disease activity in rheumatoid arthritis patients. Yonsei Med J 52:113–120

    Article  CAS  PubMed  Google Scholar 

  10. Clements PJ, Lachenbruch PA, Seibold JR et al (1993) Skin thickness score in systemic sclerosis: an assessment of interobserver variability in 3 independent studies. J Rheumatol 20:1892–1896

    CAS  PubMed  Google Scholar 

  11. Ferrara N, Winer J, Henzel WJ (1992) Pituitary follicular cells secrete an inhibitor of aortic endothelial cell growth: identification as leukemia inhibitory factor. Proc Natl Acad Sci USA 89:698–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gearing DP, Gough NM, King JA et al (1987) Molecular cloning and expression of cDNA encoding a murine myeloid leukaemia inhibitory factor (LIF). EMBO J 6:3995–4002

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gearing DP (1993) The leukemia inhibitory factor and its receptor. Adv Immunol 53:31–58

    Article  CAS  PubMed  Google Scholar 

  14. Gendron RL, Tsai FY, Paradis H, Arceci RJ (1996) Induction of embryonic vasculogenesis by bFGF and LIF in vitro and in vivo. Dev Biol 177:332–346

    Article  CAS  PubMed  Google Scholar 

  15. Gillett NA, Lowe D, Lu L, Chan C, Ferrara N (1993) Leukemia inhibitory factor expression in human carotid plaques: possible mechanism for inhibition of large vessel endothelial regrowth. Growth Factors 9:301–305

    Article  CAS  PubMed  Google Scholar 

  16. Guimbaud R, Abitbol V, Bertrand V et al (1998) Leukemia inhibitory factor involvement in human ulcerative colitis and its potential role in malignant course. Eur Cytokine Netw 9:607–612

    CAS  PubMed  Google Scholar 

  17. Hasegawa M, Sato S, Fujimoto M, Ihn H, Kikuchi K, Takehara K (1998) Serum levels of interleukin 6 (IL-6), oncostatin M, soluble IL-6 receptor, and soluble gp130 in patients with systemic sclerosis. J Rheumatol 25:308–313

    CAS  PubMed  Google Scholar 

  18. Ichimura Y, Asano Y, Akamata K et al (2014) Fli1 deficiency contributes to the suppression of endothelial CXCL5 expression in systemic sclerosis. Arch Dermatol Res 306:331–338

    Article  CAS  PubMed  Google Scholar 

  19. Kaplan MJ (2011) Neutrophils in the pathogenesis and manifestations of SLE. Nat Rev Rheumatol 7:691–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koch AE, Kunkel SL, Harlow LA et al (1994) Epithelial neutrophil activating peptide-78: a novel chemotactic cytokine for neutrophils in arthritis. J Clin Invest 94:1012–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kubota Y, Hirashima M, Kishi K, Stewart CL, Suda T (2008) Leukemia inhibitory factor regulates microvessel density by modulating oxygen-dependent VEGF expression in mice. J Clin Invest 118:2393–2403

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lafyatis R, York M (2009) Innate immunity and inflammation in systemic sclerosis. Curr Opin Rheumatol 21:617–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. LeRoy EC, Black C, Fleischmajer R et al (1988) Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 15:202–205

    CAS  PubMed  Google Scholar 

  24. Masui Y, Asano Y, Shibata S et al (2012) Serum adiponectin levels inversely correlate with the activity of progressive skin sclerosis in patients with diffuse cutaneous systemic sclerosis. J Eur Acad Dermatol Venereol 26:354–360

    Article  CAS  PubMed  Google Scholar 

  25. Masui Y, Asano Y, Shibata S et al (2013) A possible contribution of visfatin to the resolution of skin sclerosis in patients with diffuse cutaneous systemic sclerosis via a direct anti-fibrotic effect on dermal fibroblasts and Th1 polarization of the immune response. Rheumatology (Oxford) 52:1239–1244

    Article  CAS  Google Scholar 

  26. Matsushita T, Hasegawa M, Hamaguchi Y, Takehara K, Sato S (2006) Longitudinal analysis of serum cytokine concentrations in systemic sclerosis: association of interleukin 12 elevation with spontaneous regression of skin sclerosis. J Rheumatol 33:275–284

    CAS  PubMed  Google Scholar 

  27. Metcalf D (2003) The unsolved enigmas of leukemia inhibitory factor. Stem Cells 21:5–14

    Article  CAS  PubMed  Google Scholar 

  28. Moran CS, Campbell JH, Simmons DL, Campbell GR (1994) Human leukemia inhibitory factor inhibits development of experimental atherosclerosis. Arterioscler Thromb 14:1356–1363

    Article  CAS  PubMed  Google Scholar 

  29. Needleman BW, Wigley FM, Stair RW (1992) Interleukin-1, interleukin-2, interleukin-4, interleukin-6, tumor necrosis factor α, and interferon-γ levels in sera from patients with scleroderma. Arthritis Rheum 35:67–72

    Article  CAS  PubMed  Google Scholar 

  30. Noda S, Asano Y, Akamata K et al (2012) A possible contribution of altered cathepsin B expression to the development of skin sclerosis and vasculopathy in systemic sclerosis. PLoS One 7:e32272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Noda S, Asano Y, Takahashi T et al (2013) Decreased cathepsin V expression due to Fli1 deficiency contributes to the development of dermal fibrosis and proliferative vasculopathy in systemic sclerosis. Rheumatology (Oxford) 52:790–799

    Article  CAS  Google Scholar 

  32. Noda S, Asano Y, Nishimura S et al (2014) Simultaneous downregulation of KLF5 and Fli1 is a key feature underlying systemic sclerosis. Nat Commun 5:5797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. O’Reilly S, Cant R, Ciechomska M, van Laar JM (2013) Interleukin-6: a new therapeutic target in systemic sclerosis? Clin Transl Immunology 2:e4

    Article  PubMed  PubMed Central  Google Scholar 

  34. O’Reilly S, Ciechomska M, Cant R, van Laar JM (2014) Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-β (TGF-β) signaling promoting SMAD3 activation and fibrosis via Gremlin protein. J Biol Chem 289:9952–9960

    Article  PubMed  PubMed Central  Google Scholar 

  35. Obermoser G, Sontheimer RD, Zelger B (2010) Overview of common, rare and atypical manifestations of cutaneous lupus erythematosus and histopathological correlates. Lupus 19:1050–1070

    Article  CAS  PubMed  Google Scholar 

  36. Pepper MS, Ferrara N, Orci L, Montesano R (1995) Leukemia inhibitory factor (LIF) inhibits angiogenesis in vitro. J Cell Sci 108(Pt 1):73–83

    CAS  PubMed  Google Scholar 

  37. Rolfe BE, Stamatiou S, World CJ et al (2003) Leukaemia inhibitory factor retards the progression of atherosclerosis. Cardiovasc Res 58:222–230

    Article  CAS  PubMed  Google Scholar 

  38. Sato S, Hasegawa M, Takehara K (2001) Serum levels of interleukin-6 and interleukin-10 correlate with total skin thickness score in patients with systemic sclerosis. J Dermatol Sci 27:140–146

    Article  CAS  PubMed  Google Scholar 

  39. Schainberg H, Borish L, King M, Rocklin RE, Rosenwasser LJ (1988) Leukocyte inhibitory factor stimulates neutrophil-endothelial cell adhesion. J Immunol 141:3055–3060

    CAS  PubMed  Google Scholar 

  40. Shima Y, Kuwahara Y, Murota H et al (2010) The skin of patients with systemic sclerosis softened during the treatment with anti-IL-6 receptor antibody tocilizumab. Rheumatology (Oxford) 49:2408–2412

    Article  CAS  Google Scholar 

  41. Stuart RA, Littlewood AJ, Maddison PJ, Hall ND (1995) Elevated serum interleukin-6 levels associated with active disease in systemic connective tissue disorders. Clin Exp Rheumatol 13:17–22

    CAS  PubMed  Google Scholar 

  42. Szepietowski J, Walker C, Hunter JA, McKenzie RC (2001) Elevated leukaemia inhibitory factor (LIF) expression in lesional psoriatic skin: correlation with interleukin (IL)-8 expression. J Dermatol 28:115–122

    Article  CAS  PubMed  Google Scholar 

  43. Taga T, Kishimoto T (1997) Gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol 15:797–819

    Article  CAS  PubMed  Google Scholar 

  44. Takahashi T, Asano Y, Sugawara K et al (2017) Epithelial Fli1 deficiency drives systemic autoimmunity and fibrosis: possible roles in scleroderma. J Exp Med 214:1129–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Taniguchi T, Asano Y, Akamata K et al (2012) Serum levels of galectin-3: possible association with fibrosis, aberrant angiogenesis, and immune activation in patients with systemic sclerosis. J Rheumatol 39:539–544

    Article  CAS  PubMed  Google Scholar 

  46. Taniguchi T, Asano Y, Akamata K et al (2015) Fibrosis, vascular activation, and immune abnormalities resembling systemic sclerosis in bleomycin-treated Fli-1-haploinsufficient mice. Arthritis Rheumatol 67:517–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van den Hoogen F, Khanna D, Fransen J et al (2013) 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum 65:2737–2747

    Article  PubMed  PubMed Central  Google Scholar 

  48. van den Hoogen F, Khanna D, Fransen J et al (2013) 2013 classification criteria for systemic sclerosis: an American college of rheumatology/European league against rheumatism collaborative initiative. Ann Rheum Dis 72:1747–1755

    Article  PubMed  Google Scholar 

  49. Varga J, Whitfield ML (2009) Transforming growth factor-β in systemic sclerosis (scleroderma). Front Biosci (Schol Ed) 1:226–235

    Article  Google Scholar 

  50. Viallard JF, Taupin JL, Miossec V, Pellegrin JL, Moreau BL (1999) Analysis of interleukin-6, interleukin-10 and leukemia inhibitory factor (LIF) production by peripheral blood cells from patients with systemic lupus erythematosus identifies LIF as a potential marker of disease activity. Eur Cytokine Netw 10:17–24

    CAS  PubMed  Google Scholar 

  51. Yoshizaki A, Iwata Y, Komura K et al (2008) CD19 regulates skin and lung fibrosis via Toll-like receptor signaling in a model of bleomycin-induced scleroderma. Am J Pathol 172:1650–1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Z’Graggen K, Walz A, Mazzucchelli L, Strieter RM, Mueller C (1997) The C-X-C chemokine ENA-78 is preferentially expressed in intestinal epithelium in inflammatory bowel disease. Gastroenterology 113:808–816

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant for Research on Intractable Diseases from the Ministry of Health, Labour, and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihide Asano.

Ethics declarations

Conflict of interest

The authors have declared no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taniguchi, T., Miyagawa, T., Tamaki, Z. et al. A possible implication of reduced levels of LIF, LIFR, and gp130 in vasculopathy related to systemic sclerosis. Arch Dermatol Res 309, 833–842 (2017). https://doi.org/10.1007/s00403-017-1786-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-017-1786-4

Keywords

Navigation