Advertisement

Archives of Dermatological Research

, Volume 309, Issue 1, pp 47–53 | Cite as

Ketoconazole inhibits Malassezia furfur morphogenesis in vitro under filamentation optimized conditions

  • Sirida Youngchim
  • Joshua D. Nosanchuk
  • Siriporn Chongkae
  • Nongnuch Vanittanokom
Original Paper

Abstract

Malassezia furfur, a constituent of the normal human skin flora, is an etiological agent of pityriasis versicolor, which represents one of the most common human skin diseases. Under certain conditions, both exogenous and endogenous, the fungus can transition from a yeast form to a pathogenic mycelial form. To develop a standardized medium for reproducible production of the mycelial form of M. furfur to develop and optimize susceptibility testing for this pathogen, we examined and characterized variables, including kojic acid and glycine concentration, agar percentage, and pH, to generate a chemically defined minimal medium on which specific inoculums of M. furfur generated the most robust filamentation. Next, we examined the capacity of ketoconazole to inhibit the formation of M. furfur mycelial form. Both low and high, 0.01, 0.05 and 0.1 µg/ml concentrations of ketoconazole significantly inhibited filamentation at 11.9, 54.5 and 86.7%, respectively. Although ketoconazole can have a direct antifungal effect on both M. furfur yeast and mycelial cells, ketoconazole also has a dramatic impact on suppressing morphogenesis. Since mycelia typified the pathogenic form of Malassezia infection, the capacity of ketoconazole to block morphogenesis may represent an additional important effect of the antifungal.

Keywords

Malassezia furfur Morphogenesis Ketoconazole Filament 

Notes

Acknowledgements

This study was financially supported by the Research Fund of the Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. JDN is partly supported by NIH AI52733.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

References

  1. 1.
    Barchmann T, Hort W, Krämer HJ, Mayser P (2011) Glycine as a regulator of tryptophan-dependent pigment synthesis in Malassezia furfur. Mycoses 54(1):17–22CrossRefPubMedGoogle Scholar
  2. 2.
    Borelli D, Jacobs PH, Nall L (1991) Tinea versicolor: epidemiologic, clinical, and therapeutic aspects. J Am Acad Dermatol 25(2 Pt 1):300–305CrossRefPubMedGoogle Scholar
  3. 3.
    Carrillo-Muñoz AJ, Rojas F, Tur-Tur C, de Los Ángeles Sosa M, Diez GO, Espada CM, Payá MJ, Giusiano G (2013) In vitro antifungal activity of topical and systemic antifungal drugs against Malassezia species. Mycoses 56(5):571–575CrossRefPubMedGoogle Scholar
  4. 4.
    Crespo-Erchiga V, Florencio VD (2006) Malassezia yeasts and pityriasis versicolor. Curr Opin Infect Dis 19(2):139–147CrossRefPubMedGoogle Scholar
  5. 5.
    Dorn M, Roehnert K (1977) Dimorphism of Pityrosporum orbiculare in a defined culture medium. J Invest Dermatol 69(2):244–248CrossRefPubMedGoogle Scholar
  6. 6.
    Faergemann J, Aly R, Maibach HI (1983) Growth and filament production of Pityrosporum orbiculare and Pityrosporum ovale on human stratum corneum in vitro. Acta Derm Venereol 63(5):388–392PubMedGoogle Scholar
  7. 7.
    Faergemann J, Ausma J, Borgers M (2006) In vitro activity of R126638 and ketoconazole against Malassezia species. Acta Derm Venereol 86(4):312–315CrossRefPubMedGoogle Scholar
  8. 8.
    Faergemann J, Borgers M, Degreef H (2007) A new ketoconazole topical gel formulation in seborrhoeic dermatitis: an updated review of the mechanism. Expert Opin Pharmacother 8(9):1365–1371CrossRefPubMedGoogle Scholar
  9. 9.
    Gaitanis G, Chasapi V, Velegraki A (2005) Novel application of the Masson-Fontana stain for demonstrating Malassezia species melanin-like pigment production in vitro and in clinical specimens. J Clin Microbiol 43(8):4147–4151CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gaitanis G, Magiatis P, Hantschke M, Bassukas ID, Velegraki A (2012) The Malassezia genus in skin and systemic diseases. Clin Microbiol Rev 25(1):106–141CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Garau M, Pereiro M Jr, del Palacio A (2003) In vitro susceptibilities of Malassezia species to a new triazole, albaconazole (UR-9825), and other antifungal compounds. Antimicrob Agents Chemother 47(7):2342–2344CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Guého E, Boekhout T, Ashbee HR, Guillot J, Van Belkum A, Faergemann J (1998) The role of Malassezia species in the ecology of human skin and as pathogens. Med Mycol 36(Suppl 1):220–229PubMedGoogle Scholar
  13. 13.
    Guého E, Boekhout T, Begerow D (2010) Biodiversity, phylogeny and ultrastructure. In: Boekhout T, Guého E, Mayser P, Velegraki A (eds) Malassezia and the skin. Springer, Berlin, Heidelberg, pp 17–63CrossRefGoogle Scholar
  14. 14.
    Guillot J, Breugnot C, de Barros M, Chermette R (1998) Usefulness of modified Dixon’s medium for quantitative culture of Malassezia species from canine skin. J Vet Diagn Invest 10(4):384–386CrossRefPubMedGoogle Scholar
  15. 15.
    Gupta AK, Kohli Y, Summerbell RC, Faergemann J (2001) Quantitative culture of Malassezia species from different body sites of individuals with or without dermatoses. Med Mycol 39(3):243–251CrossRefPubMedGoogle Scholar
  16. 16.
    Gupta AK, Batra R, Bluhm R, Boekhout T, Dawson TL Jr (2004) Skin diseases associated with Malassezia species. J Am Acad Dermatol 51(5):785–798CrossRefPubMedGoogle Scholar
  17. 17.
    Gupta AK, Cooper EA, Ryder JE, Nicol KA, Chow M, Chauhry MM (2004) Optimal management of fungal infections of the skin, hair, and nails. Am J Clin Dermatol 5(4):225–237CrossRefPubMedGoogle Scholar
  18. 18.
    Intayot P, Youngchim S (2016) Comparison of biochemical characterizations with PCR amplification in identification of Malassezia species isolated from pityriasis versicolor and healthy volunteers. Chiang Mai Med J 55(Suppl 1):31–43Google Scholar
  19. 19.
    Jena DK, Sengupta S, Dwari BC, Ram MK (2005) Pityriasis versicolor in the pediatric age group. Indian J Dermatol Venereol Leprol 71(4):259–261CrossRefPubMedGoogle Scholar
  20. 20.
    Kolecka A, Khayhan K, Arabatzis M, Velegraki A, Kostrzewa M, Andersson A, Scheynius A, Cafarchia C, Iatta R, Montagna MT, Youngchim S, Cabañes FJ, Hoopman P, Kraak B, Groenewald M, Boekhout T (2014) Efficient identification of Malassezia yeasts by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Br J Dermatol 170(2):332–341CrossRefPubMedGoogle Scholar
  21. 21.
    Krisanty RI, Bramono K, Made Wisnu I (2009) Identification of Malassezia species from pityriasis versicolor in Indonesia and its relationship with clinical characteristics. Mycoses 52(3):257–262CrossRefPubMedGoogle Scholar
  22. 22.
    Lambers H, Piessens S, Bloem A, Pronk H, Finkel P (2006) Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int J Cosmet Sci 28(5):359–370CrossRefPubMedGoogle Scholar
  23. 23.
    Midgley G (2000) The lipophilic yeasts state of the art and prospects. Med Mycol 38(Suppl. I):9–16CrossRefPubMedGoogle Scholar
  24. 24.
    Montes LE (1970) Systemic abnormalities and the intracellular site of infection of the stratum corneum. JAMA 213(9):1469–1472CrossRefPubMedGoogle Scholar
  25. 25.
    Pérez Blanco M, Urbina de Guanipa O, Fernández Zeppenfeldt G, Richard de Yegres N (1990) Effect of temperature and humidity on the frequency of pityriasis versicolor. Epidemiological study in the state of Falcón, Venezuela. Invest Clin 31(3):121–128PubMedGoogle Scholar
  26. 26.
    Prohic A, Jovovic Sadikovic T, Krupalija-Fazlic M, Kuskunovic-Vlahovljak S (2016) Malassezia species in healthy skin and in dermatological conditions. Int J Dermatol 55(5):494–504CrossRefPubMedGoogle Scholar
  27. 27.
    Rao GS, Kuruvilla M, Kumar P, Vinod V (2002) Clinico-epidermiological studies on tinea versicolor. Indian J Dermatol Venereol Leprol 68(4):208–209PubMedGoogle Scholar
  28. 28.
    Rincón S, Cepero de García MC, Espinel-Ingroff A (2006) A modified Christensen’s urea and CLSI broth microdilution method for testing susceptibilities of six Malassezia species to voriconazole, itraconazole, and ketoconazole. J Clin Microbiol 44(9):3429–3431CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Rojas FD, Sosa Mde L, Fernández MS, Cattana ME, Córdoba SB, Giusiano GE (2014) Antifungal susceptibility of Malassezia furfur, Malassezia sympodialis, and Malassezia globosa to azole drugs and amphotericin B evaluated using a broth microdilution method. Med Mycol 52(6):641–646CrossRefPubMedGoogle Scholar
  30. 30.
    Saadatzadeh MR, Ashbee HR, Holland KT, Ingham E (2001) Production of the mycelial phase of Malassezia in vitro. Med Mycol 39(6):487–493CrossRefPubMedGoogle Scholar
  31. 31.
    Savin R (1996) Diagnosis and treatment of tinea versicolor. J Fam Pract 43(2):127–132PubMedGoogle Scholar
  32. 32.
    Scheinfeld N (2008) Ketoconazole: a review of a workhorse antifungal molecule with a focus on new foam and gel formulations. Drugs Today (Barc) 44(5):369–380CrossRefGoogle Scholar
  33. 33.
    Schwartz RA (2004) Superficial fungal infections. Lancet 364(9440):1173–1182CrossRefPubMedGoogle Scholar
  34. 34.
    Sharma A, Rabha D, Choraria S et al (2016) Clinicomycological profile of pityriasis versicolor in Assam. Indian J Pathol Microbiol 59(2):159–165CrossRefPubMedGoogle Scholar
  35. 35.
    Sunenshine PJ, Schwartz RA, Janniger CK (1998) Tinea versicolor. Int J Dermatol 37(9):648–655CrossRefPubMedGoogle Scholar
  36. 36.
    Tajima M, Sugita T, Harada S et al (2006) Detection of hyphae specific genes from Malassezia species using Megasort®. Nippon Ishinkin Gakkai Zasshi 47(Suppl 1):70Google Scholar
  37. 37.
    Velegraki A, Alexopoulos EC, Kritikou S, Gaitanis G (2004) Use of fatty acid RPMI 1640 media for testing susceptibilities of eight Malassezia species to the new triazole posaconazole and to six established antifungal agents by a modified NCCLS M27–A2 microdilution method and Etest. J Clin Microbiol 42(8):3589–3593CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Youngchim S, Nosanchuk JD, Pornsuwan S, Kajiwara S, Vanittanakom N (2013) The role of L-DOPA on melanization and mycelial production in Malassezia furfur. PLoS One 8(6):e63764CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sirida Youngchim
    • 1
  • Joshua D. Nosanchuk
    • 2
  • Siriporn Chongkae
    • 1
  • Nongnuch Vanittanokom
    • 1
  1. 1.Department Microbiology, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
  2. 2.Department of Medicine (Infectious Diseases)Albert Einstein College of MedicineBronxUSA

Personalised recommendations