Skip to main content

Advertisement

Log in

Low-concentration hydrogen peroxide can upregulate keratinocyte intracellular calcium and PAR-2 expression in a human keratinocyte–melanocyte co-culture system

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Hydrogen peroxide (H2O2) may have a biphasic effect on melanin synthesis and melanosome transfer. High H2O2 concentrations are involved in impaired melanosome transfer in vitiligo. However, low H2O2 concentration promotes the beneficial proliferation and migration of melanocytes. The aim of this study was to explore low H2O2 and its mechanism in melanosome transfer, protease-activated receptor-2 (PAR-2) expression and calcium balance. Melanosomes were fluorescein-labeled for clear visualization of their transfer. The expression of protease-activated receptor-2 (PAR-2) in keratinocytes was determined by western blot analysis. Flow cytometry was employed to evaluate the effects of H2O2 on calcium levels in keratinocytes. Fluorescence microscopy showed the upregulation of melanosome transfer into keratinocytes following 0.3 mM H2O2 treatment in the co-cultures rather than in the untreated control groups, which was associated with higher expression of PAR-2 protein and increased calcium concentration. The addition of a PAR-2 antagonist inhibited the positive activity of H2O2 and calcium flow in keratinocytes. When calcium flow was blocked by a calcium chelator, the addition of H2O2 did not increase the PAR-2 expression level in keratinocytes, therefore, inhibiting dendrite formation and melanosome transfer. Low H2O2 concentration promotes melanosome transfer with increased PAR-2 expression level and calcium concentration in keratinocytes. In addition, the interaction between melanocytes and keratinocytes is more beneficial to enhance calcium levels in keratinocytes which mediate melanin transfer. Moreover, low H2O2 concentration promotes dendrite formation, in which extracellular calcium and Par-2 were involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. AlGhamdi KM, Kumar A, Ashour AE, AlGhamdi AA (2015) A comparative study of the effects of different low-level lasers on the proliferation, viability, and migration of human melanocytes in vitro. Lasers Med Sci 30:1541–1551. doi:10.1007/s10103-015-1758-x

    Article  PubMed  Google Scholar 

  2. Alkhateeb A, Fain PR, Thody A, Bennett DC, Spritz RA (2003) Epidemiology of vitiligo and associated autoimmune diseases in Caucasian probands and their families. Pigment Cell Res 16:208–214

    Article  PubMed  Google Scholar 

  3. Braga V, Harwood AJ (2001) Super glue. Nat Cell Biol 3:E168–E170. doi:10.1038/35083128

    Article  CAS  PubMed  Google Scholar 

  4. Choi EJ, Kang YG, Kim J, Hwang JK (2011) Macelignan inhibits melanosome transfer mediated by protease-activated receptor-2 in keratinocytes. Biol Pharm Bull 34:748–754

    Article  CAS  PubMed  Google Scholar 

  5. Choi HI, Sohn KC, Hong DK, Lee Y, Kim CD, Yoon TJ, Park JW, Jung S, Lee JH, Lee YH (2014) Melanosome uptake is associated with the proliferation and differentiation of keratinocytes. Arch Dermatol Res 306:59–66. doi:10.1007/s00403-013-1422-x

    Article  CAS  PubMed  Google Scholar 

  6. Duval C, Smit NP, Kolb AM, Regnier M, Pavel S, Schmidt R (2002) Keratinocytes control the pheo/eumelanin ratio in cultured normal human melanocytes. Pigment Cell Res 15:440–446

    Article  CAS  PubMed  Google Scholar 

  7. Gibbons NC, Wood JM, Rokos H, Schallreuter KU (2006) Computer simulation of native epidermal enzyme structures in the presence and absence of hydrogen peroxide (H2O2): potential and pitfalls. J Invest Dermatol 126:2576–2582. doi:10.1038/sj.jid.5700612

    Article  CAS  PubMed  Google Scholar 

  8. Gniadecki R, Gajkowska B (2003) Intracellular calcium pool emptying induces DNA synthesis in HaCaT keratinocytes. Exp Dermatol 12:453–459

    Article  CAS  PubMed  Google Scholar 

  9. Hirobe T (2011) How are proliferation and differentiation of melanocytes regulated? Pigment Cell Melanoma Res 24:462–478. doi:10.1111/j.1755-148X.2011.00845.x

    Article  CAS  PubMed  Google Scholar 

  10. Ito Y, Kanamaru A, Tada A (2006) Centaureidin promotes dendrite retraction of melanocytes by activating Rho. Biochim Biophys Acta 1760:487–494. doi:10.1016/j.bbagen.2006.01.003

    Article  CAS  PubMed  Google Scholar 

  11. Joshi PG, Nair N, Begum G, Joshi NB, Sinkar VP, Vora S (2007) Melanocyte-keratinocyte interaction induces calcium signalling and melanin transfer to keratinocytes. Pigment Cell Res 20:380–384. doi:10.1111/j.1600-0749.2007.00397.x

    CAS  PubMed  Google Scholar 

  12. Khan R, Satyam A, Gupta S, Sharma VK, Sharma A (2009) Circulatory levels of antioxidants and lipid peroxidation in Indian patients with generalized and localized vitiligo. Arch Dermatol Res 301:731–737. doi:10.1007/s00403-009-0964-4

    Article  CAS  PubMed  Google Scholar 

  13. Kleszczynski K, Ernst IM, Wagner AE, Kruse N, Zillikens D, Rimbach G, Fischer TW (2013) Sulforaphane and phenylethyl isothiocyanate protect human skin against UVR-induced oxidative stress and apoptosis: role of Nrf2-dependent gene expression and antioxidant enzymes. Pharmacol Res 78:28–40. doi:10.1016/j.phrs.2013.09.009

    Article  CAS  PubMed  Google Scholar 

  14. Lei TC, Vieira WD, Hearing VJ (2002) In vitro migration of melanoblasts requires matrix metalloproteinase-2: implications to vitiligo therapy by photochemotherapy. Pigment Cell Res 15:426–432

    Article  CAS  PubMed  Google Scholar 

  15. Lei TC, Virador VM, Vieira WD, Hearing VJ (2002) A melanocyte-keratinocyte coculture model to assess regulators of pigmentation in vitro. Anal Biochem 305:260–268. doi:10.1006/abio.2002.5665

    Article  CAS  PubMed  Google Scholar 

  16. Lu-yan T, Wen-wen F, Lei-hong X, Yi J, Zhi-zhong Z (2006) Topical tacalcitol and 308-nm monochromatic excimer light: a synergistic combination for the treatment of vitiligo. Photodermatol Photoimmunol Photomed 22:310–314. doi:10.1111/j.1600-0781.2006.00250.x

    Article  PubMed  Google Scholar 

  17. Macfarlane SR, Sloss CM, Cameron P, Kanke T, McKenzie RC, Plevin R (2005) The role of intracellular Ca2+ in the regulation of proteinase-activated receptor-2 mediated nuclear factor kappa B signalling in keratinocytes. Br J Pharmacol 145:535–544. doi:10.1038/sj.bjp.0706204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miyazaki K (2004) Novel approach for evaluation of estrogenic and anti-estrogenic activities of genistein and daidzein using B16 melanoma cells and dendricity assay. Pigment Cell Res 17:407–412. doi:10.1111/j.1600-0749.2004.00167.x

    Article  CAS  PubMed  Google Scholar 

  19. Moretti S, Nassini R, Prignano F, Pacini A, Materazzi S, Naldini A, Simoni A, Baroni G, Pellerito S, Filippi I, Lotti T, Geppetti P, Massi D (2009) Protease-activated receptor-2 downregulation is associated to vitiligo lesions. Pigment Cell Melanoma Res 22:335–338. doi:10.1111/j.1755-148X.2009.00562.x

    Article  CAS  PubMed  Google Scholar 

  20. Oh SH, Kim JY, Kim MR, Do JE, Shin JY, Hann SK (2012) DKK1 is highly expressed in the dermis of vitiligo lesion: is there association between DKK1 and vitiligo? J Dermatol Sci 66:163–165. doi:10.1016/j.jdermsci.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  21. Park HY, Kosmadaki M, Yaar M, Gilchrest BA (2009) Cellular mechanisms regulating human melanogenesis. Cell Mol Life Sci 66:1493–1506. doi:10.1007/s00018-009-8703-8

    Article  CAS  PubMed  Google Scholar 

  22. Schallreuter KU, Moore J, Wood JM, Beazley WD, Gaze DC, Tobin DJ, Marshall HS, Panske A, Panzig E, Hibberts NA (1999) In vivo and in vitro evidence for hydrogen peroxide (H2O2) accumulation in the epidermis of patients with vitiligo and its successful removal by a UVB-activated pseudocatalase. J Investig Dermatol Symp Proc 4:91–96

    Article  CAS  PubMed  Google Scholar 

  23. Schallreuter KU, Rubsam K, Chavan B, Zothner C, Gillbro JM, Spencer JD, Wood JM (2006) Functioning methionine sulfoxide reductases A and B are present in human epidermal melanocytes in the cytosol and in the nucleus. Biochem Biophys Res Commun 342:145–152. doi:10.1016/j.bbrc.2006.01.124

    Article  CAS  PubMed  Google Scholar 

  24. Schallreuter KU, Salem MA, Holtz S, Panske A (2013) Basic evidence for epidermal H2O2/ONOO(−)-mediated oxidation/nitration in segmental vitiligo is supported by repigmentation of skin and eyelashes after reduction of epidermal H2O2 with topical NB-UVB-activated pseudocatalase PC-KUS. FASEB J 27:3113–3122. doi:10.1096/fj.12-226779

    Article  CAS  PubMed  Google Scholar 

  25. Schallreuter KU, Wazir U, Kothari S, Gibbons NC, Moore J, Wood JM (2004) Human phenylalanine hydroxylase is activated by H2O2: a novel mechanism for increasing the l-tyrosine supply for melanogenesis in melanocytes. Biochem Biophys Res Commun 322:88–92. doi:10.1016/j.bbrc.2004.07.082

    Article  CAS  PubMed  Google Scholar 

  26. Scott G, Deng A, Rodriguez-Burford C, Seiberg M, Han R, Babiarz L, Grizzle W, Bell W, Pentland A (2001) Protease-activated receptor 2, a receptor involved in melanosome transfer, is upregulated in human skin by ultraviolet irradiation. J Invest Dermatol 117:1412–1420. doi:10.1046/j.0022-202x.2001.01575.x

    Article  CAS  PubMed  Google Scholar 

  27. Scott G, Leopardi S, Parker L, Babiarz L, Seiberg M, Han R (2003) The proteinase-activated receptor-2 mediates phagocytosis in a Rho-dependent manner in human keratinocytes. J Invest Dermatol 121:529–541. doi:10.1046/j.1523-1747.2003.12427.x

    Article  CAS  PubMed  Google Scholar 

  28. Seiberg M (2001) Keratinocyte-melanocyte interactions during melanosome transfer. Pigment Cell Res 14:236–242

    Article  CAS  PubMed  Google Scholar 

  29. Seiberg M, Paine C, Sharlow E, Andrade-Gordon P, Costanzo M, Eisinger M, Shapiro SS (2000) The protease-activated receptor 2 regulates pigmentation via keratinocyte-melanocyte interactions. Exp Cell Res 254:25–32. doi:10.1006/excr.1999.4692

    Article  CAS  PubMed  Google Scholar 

  30. Sharlow ER, Paine CS, Babiarz L, Eisinger M, Shapiro S, Seiberg M (2000) The protease-activated receptor-2 upregulates keratinocyte phagocytosis. J Cell Sci 113(Pt 17):3093–3101

    CAS  PubMed  Google Scholar 

  31. Tang L, Li J, Lin X, Wu W, Kang K, Fu W (2012) Oxidation levels differentially impact melanocytes: low versus high concentration of hydrogen peroxide promotes melanin synthesis and melanosome transfer. Dermatology 224:145–153. doi:10.1159/000336777

    Article  CAS  PubMed  Google Scholar 

  32. Tarafder AK, Bolasco G, Correia MS, Pereira FJ, Iannone L, Hume AN, Kirkpatrick N, Picardo M, Torrisi MR, Rodrigues IP, Ramalho JS, Futter CE, Barral DC, Seabra MC (2014) Rab11b mediates melanin transfer between donor melanocytes and acceptor keratinocytes via coupled exo/endocytosis. J Invest Dermatol 134:1056–1066. doi:10.1038/jid.2013.432

    Article  CAS  PubMed  Google Scholar 

  33. Tu CL, Chang W, Xie Z, Bikle DD (2008) Inactivation of the calcium sensing receptor inhibits E-cadherin-mediated cell-cell adhesion and calcium-induced differentiation in human epidermal keratinocytes. J Biol Chem 283:3519–3528. doi:10.1074/jbc.M708318200

    Article  CAS  PubMed  Google Scholar 

  34. Wolff K, Goldsmith L, Katz S, Gilchrest B, Paller A, Leffell D (2007) Fitzpatrick’s dermatology in general medicine, 7th edn. Mac Graw Hill, USA

    Google Scholar 

  35. Wu JB, Song NN, Wei XB, Guan HS, Zhang XM (2008) Protective effects of paeonol on cultured rat hippocampal neurons against oxygen-glucose deprivation-induced injury. J Neurol Sci 264:50–55. doi:10.1016/j.jns.2007.06.057

    Article  CAS  PubMed  Google Scholar 

  36. Pelle E, Mammone T, Maes D, Frenkel K (2005) Keratinocytes act as a source of reactive oxygen species by transferring hydrogen peroxide to melanocytes. J invest dermatol 124(4):793–797. doi:10.1111/j.0022-202X.2005.23661.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present work was sponsored by the Science and Technology Commission of Shanghai Municipality (Grant No. 13401902600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-Yan Tang.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee of Huashan Hospital of Fudan University and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Tang, LY., Fu, WW. et al. Low-concentration hydrogen peroxide can upregulate keratinocyte intracellular calcium and PAR-2 expression in a human keratinocyte–melanocyte co-culture system. Arch Dermatol Res 308, 723–731 (2016). https://doi.org/10.1007/s00403-016-1692-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-016-1692-1

Keywords

Navigation