Archives of Dermatological Research

, Volume 308, Issue 9, pp 643–654 | Cite as

Anti-wrinkle and anti-whitening effects of jucá (Libidibia ferrea Mart.) extracts

  • Tatiana do Nascimento Pedrosa
  • Aline Oliveira Barros
  • Jéssica Rodrigues Nogueira
  • Andréa Costa Fruet
  • Isis Costa Rodrigues
  • Danielle Queiroz Calcagno
  • Marilia de Arruda Cardoso Smith
  • Tatiane Pereira de Souza
  • Silvia Berlanga de Moraes Barros
  • Marne Carvalho de Vasconcellos
  • Felipe Moura Araújo da Silva
  • Hector Henrique Ferreira Koolen
  • Silvya Stuchi Maria-Engler
  • Emerson Silva LimaEmail author
Original Paper


Skin aging is a natural process of the human body that may be accelerated due to extrinsic causes. Libidibia ferrea, popularly known as jucá, is a small tree, which possesses an abundant phenolic composition with potential antioxidant and enzymatic inhibition activities. Thus, this work aimed to investigate the anti-wrinkle and anti-whitening potentials of jucá trunk bark (LFB) and pod (LFP) extracts. A comprehensive analysis of LFB and LFP phenolic composition was accomplished by means of liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS). Effects on skin degradation were assessed by inhibitory enzymatic activity against elastase, hyaluronidase and collagenase through colorimetric assays. Cellular viability in B16F10 and primary fibroblasts were determined by Trypan Blue exclusion assay. Anti-melanogenic effects on B16F10 cells were evaluated using cellular tyrosinase, melanin content, western blot, and RT-qPCR analyses. Inhibition of matrix metalloproteinase-2 and metalloproteinase-9 (MMP-2 and MMP-9) was determined by gelatin zymography and western blot methodologies. LC–MS/MS analyses of LFB and LFP extracts allowed the characterization of 18 compounds, among them, flavonoids, phenolic acids, and secoridoids. Additionally the pod and trunk bark compositions were compared. Hyaluronidase inhibitory activity for both extracts, LFB (IC50 = 8.5 ± 0.8 µg/mL) and LFP (IC50 = 16 ± 0.5 µg/mL), was stronger than standard rutin (IC50 = 27.6 ± 0.06). Pro-MMP-2 was significantly inhibited by both extracts. LFB and LFP decreased the melanin content in B16F10 due to tyrosinase inhibitory activity. L. ferrea extracts has high potential as a cosmetic ingredient due to its anti-wrinkle and depigmentant effects.


Libidibia ferrea Skin aging Melanogenesis Tyrosinase Polyphenols 



The authors thank FAPESP, FAPEAM, CAPES and CNPq for financial support. Jim Hesson of Academic English Solutions revised the text ( and Rubelmar Cruz Neto for the help with figures.

Compliance with ethical standards

Conflict of interest

The authors declare no competing interests.


  1. 1.
    Abdillahi HS, Finnie JF, Van Staden J (2011) Anti-inflammatory, antioxidant, anti-tyrosinase and phenolic contents of four Podocarpus species used in traditional medicine in South Africa. J Ethnopharmacol 136:496–503CrossRefPubMedGoogle Scholar
  2. 2.
    Bacchi EM, Sertie JA, Villa N, Katz H (1995) Antiulcer action and toxicity of Styrax camporum and Caesalpinia ferrea. Planta Med 61:204–207CrossRefPubMedGoogle Scholar
  3. 3.
    Barla F, Higashijima H, Funai S, Sugimoto K, Harada N, Yamaji R, Fujita T, Nakano Y, Inui H (2009) Inhibitive effects of alkyl gallates on hyaluronidase and collagenase. Biosci Biotechnol Biochem 73:2335–2337CrossRefPubMedGoogle Scholar
  4. 4.
    Barros AO, De Souza RS, Aranha ESP, Da Costa LM, De Souza TP, De Vasconcellos MC, Lima ES (2014) Antioxidant and hepatoprotective activities of Libidibia ferrea bark and fruit extracts. Int J Pharm Pharm Sci 6(11):71–76.
  5. 5.
    Bataglion GA, da Silva FM, Eberlin MN, Koolen HH (2015) Determination of the phenolic composition from Brazilian tropical fruits by UHPLC-MS/MS. Food Chem 180:280–287CrossRefPubMedGoogle Scholar
  6. 6.
    Bataglion GA, da Silva FMA, Eberlin MN, Koolen HHF (2014) Simultaneous quantification of phenolic compounds in buriti fruit (Mauritia flexuosa L.f.) by ultra-high performance liquid chromatography coupled to tandem mass spectrometry. Food Res Int 66:396–400CrossRefGoogle Scholar
  7. 7.
    Brohem CA, Massaro RR, Tiago M, Marinho CE, Jasiulionis MG, de Almeida RL, Rivelli DP, Albuquerque RC, de Oliveira TF, de Melo Loureiro AP, Okada S, Soengas MS, de Moraes Barros SB, Maria-Engler SS (2012) Proteasome inhibition and ROS generation by 4-nerolidylcatechol induces melanoma cell death. Pigment Cell Melanoma Res 25:354–369CrossRefPubMedGoogle Scholar
  8. 8.
    Brohem CA, Sawada TC, Massaro RR, Almeida RL, Rivelli DP, Ropke CD, da Silva VV, de Lima TM, Curi R, Barros SB, Maria-Engler SS (2009) Apoptosis induction by 4-nerolidylcatechol in melanoma cell lines. Toxicol In Vitro 23:111–119CrossRefPubMedGoogle Scholar
  9. 9.
    Carvalho JC, Teixeira JR, Souza PJ, Bastos JK, dos Santos Filho D, Sarti SJ (1996) Preliminary studies of analgesic and anti-inflammatory properties of Caesalpinia ferrea crude extract. J Ethnopharmacol 53:175–178CrossRefPubMedGoogle Scholar
  10. 10.
    da Silva Cardeal LB, Brohem CA, Correa TC, Winnischofer SM, Nakano F, Boccardo E, Villa LL, Sogayar MC, Maria-Engler SS (2006) Higher expression and activity of metalloproteinases in human cervical carcinoma cell lines is associated with HPV presence. Biochem Cell Biol 84:713–719CrossRefPubMedGoogle Scholar
  11. 11.
    Delalle-Lozica N (2010) Local therapy as basic anti-aging prevention. Acta Clin Croat 49:529–536PubMedGoogle Scholar
  12. 12.
    Ferreira MRA, Soares LAL (2015) Libidibia ferrea (Mart. ex Tul.) L. P. Queiroz: a review of the biological activities and phytochemical composition. J Med Plants Res 9:140–150CrossRefGoogle Scholar
  13. 13.
    Heo S-J, Ko S-C, Kang S-M, Cha S-H, Lee S-H, Kang D-H, Jung W-K, Affan A, Oh C, Jeon Y-J (2010) Inhibitory effect of diphlorethohydroxycarmalol on melanogenesis and its protective effect against UV-B radiation-induced cell damage. Food Chem Toxicol 48:1355–1361CrossRefPubMedGoogle Scholar
  14. 14.
    Hosoi J, Abe E, Suda T, Kuroki T (1985) Regulation of melanin synthesis of B16 mouse melanoma cells by 1 alpha, 25-dihydroxyvitamin D3 and retinoic acid. Cancer Res 45:1474–1478PubMedGoogle Scholar
  15. 15.
    Hsu C-K, Chang C-T, Lu H-Y, Chung Y-C (2007) Inhibitory effects of the water extracts of Lavendula sp. on mushroom tyrosinase activity. Food Chem 105:1099–1105CrossRefGoogle Scholar
  16. 16.
    Karim AA, Azlan A, Ismail A, Hashim P, Abd Gani SS, Zainudin BH, Abdullah NA (2014) Phenolic composition, antioxidant, anti-wrinkles and tyrosinase inhibitory activities of cocoa pod extract. BMC Complement Alt Med 14:381CrossRefGoogle Scholar
  17. 17.
    Kim M, Shin S, Lee JA, Park D, Lee J, Jung E (2015) Inhibition of melanogenesis by Gaillardia aristata flower extract. BMC Complement Altern Med 15:449CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kim YJ (2007) Antimelanogenic and antioxidant properties of gallic acid. Biol Pharm Bull 30:1052–1055CrossRefPubMedGoogle Scholar
  19. 19.
    Kim YJ, Uyama H, Kobayashi S (2004) Inhibition effects of (+)-catechin-aldehyde polycondensates on proteinases causing proteolytic degradation of extracellular matrix. Biochem Biophys Res Commun 320:256–261CrossRefPubMedGoogle Scholar
  20. 20.
    Koolen HHF, da Silva FMA, Gozzo FC, de Souza AQL, de Souza ADL (2013) Antioxidant, antimicrobial activities and characterization of phenolic compounds from buriti (Mauritia flexuosa L. f.) by UPLC–ESI-MS/MS. Food Res Int 51:467–473CrossRefGoogle Scholar
  21. 21.
    Kubo I, Chen Q-X, Nihei K-i (2003) Molecular design of antibrowning agents: antioxidative tyrosinase inhibitors. Food Chem 81:241–247CrossRefGoogle Scholar
  22. 22.
    Lee JH, Kim GH (2010) Evaluation of antioxidant and inhibitory activities for different subclasses flavonoids on enzymes for rheumatoid arthritis. J Food Sci 75:H212–H217CrossRefPubMedGoogle Scholar
  23. 23.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  24. 24.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  25. 25.
    Momtaz S, Mapunya BM, Houghton PJ, Edgerly C, Hussein A, Naidoo S, Lall N (2008) Tyrosinase inhibition by extracts and constituents of Sideroxylon inerme L. stem bark, used in South Africa for skin lightening. J Ethnopharmacol 119:507–512CrossRefPubMedGoogle Scholar
  26. 26.
    Mukherjee PK, Maity N, Nema NK, Sarkar BK (2011) Bioactive compounds from natural resources against skin aging. Phytomedicine 19:64–73CrossRefPubMedGoogle Scholar
  27. 27.
    Nakamura ES, Kurosaki F, Arisawa M, Mukainaka T, Okuda M, Tokuda H, Nishino H, Pastore F (2002) Cancer chemopreventive effects of constituents of Caesalpinia ferrea and related compounds. Cancer Lett 177:119–124CrossRefPubMedGoogle Scholar
  28. 28.
    Nakamura ES, Kurosaki F, Arisawa M, Mukainaka T, Takayasu J, Okuda M, Tokuda H, Nishino H, Pastore F (2002) Cancer chemopreventive effects of a Brazilian folk medicine, Juca, on in vivo two-stage skin carcinogenesis. J Ethnopharmacol 81:135–137CrossRefPubMedGoogle Scholar
  29. 29.
    Nema NK, Maity N, Sarkar B, Mukherjee PK (2011) Cucumis sativus fruit-potential antioxidant, anti-hyaluronidase, and anti-elastase agent. Arch Derm Res 303:247–252CrossRefPubMedGoogle Scholar
  30. 30.
    Piwowarski JP, Kiss AK, Kozlowska-Wojciechowska M (2011) Anti-hyaluronidase and anti-elastase activity screening of tannin-rich plant materials used in traditional Polish medicine for external treatment of diseases with inflammatory background. J Ethnopharmacol 137:937–941CrossRefPubMedGoogle Scholar
  31. 31.
    Popoola OK, Marnewick JL, Rautenbach F, Ameer F, Iwuoha EI, Hussein AA (2015) Inhibition of oxidative stress and skin aging-related enzymes by prenylated chalcones and other flavonoids from Helichrysum teretifolium. Molecules 20:7143–7155CrossRefPubMedGoogle Scholar
  32. 32.
    Reissig JL, Storminger JL, Leloir LF (1955) A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem 217:959–966PubMedGoogle Scholar
  33. 33.
    Si YX, Yin SJ, Oh S, Wang ZJ, Ye S, Yan L, Yang JM, Park YD, Lee J, Qian GY (2012) An integrated study of tyrosinase inhibition by rutin: progress using a computational simulation. J Biomol Struct Dyn 29:999–1012CrossRefPubMedGoogle Scholar
  34. 34.
    Thring TS, Hili P, Naughton DP (2009) Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complement Altern Med 9:27CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tomita Y, Maeda K, Tagami H (1992) Melanocyte-stimulating properties of arachidonic acid metabolites: possible role in postinflammatory pigmentation. Pigment Cell Res 5:357–361CrossRefPubMedGoogle Scholar
  36. 36.
    Van Wart HE, Steinbrink DR (1981) A continuous spectrophotometric assay for Clostridium histolyticum collagenase. Anal Biochem 113:356–365CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Tatiana do Nascimento Pedrosa
    • 1
    • 2
  • Aline Oliveira Barros
    • 1
  • Jéssica Rodrigues Nogueira
    • 1
  • Andréa Costa Fruet
    • 2
  • Isis Costa Rodrigues
    • 1
  • Danielle Queiroz Calcagno
    • 3
    • 4
  • Marilia de Arruda Cardoso Smith
    • 4
  • Tatiane Pereira de Souza
    • 1
  • Silvia Berlanga de Moraes Barros
    • 2
  • Marne Carvalho de Vasconcellos
    • 1
  • Felipe Moura Araújo da Silva
    • 5
  • Hector Henrique Ferreira Koolen
    • 5
  • Silvya Stuchi Maria-Engler
    • 2
  • Emerson Silva Lima
    • 1
    Email author
  1. 1.Faculty of Pharmaceutical SciencesFederal University of Amazonas (UFAM)ManausBrazil
  2. 2.School of Pharmaceutical SciencesUniversity of São Paulo (USP)São PauloBrazil
  3. 3.Research Group in OncologyFederal University of Pará (UFPA)BelémBrazil
  4. 4.Department of Morphology and GeneticFederal University of São PauloSão PauloBrazil
  5. 5.Dempster Mass Spectrometry GroupAmazonas State University (UEA)ManausBrazil

Personalised recommendations