Skip to main content

Advertisement

Log in

Low levels of glutathione are sufficient for survival of keratinocytes after UV irradiation and for healing of mouse skin wounds

  • Concise Communication
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Reduced levels of the cellular antioxidant glutathione are associated with premature skin aging, cancer and impaired wound healing, but the in vivo functions of glutathione in the skin remain largely unknown. Therefore, we analyzed mice lacking the modifier subunit of the glutamate cysteine ligase (Gclm), the enzyme that catalyzes the rate-limiting step of glutathione biosynthesis. Glutathione levels in the skin of these mice were reduced by 70 %. However, neither skin development and homeostasis, nor UVA- or UVB-induced apoptosis in the epidermis were affected. Histomorphometric analysis of excisional wounds did not reveal wound healing abnormalities in young Gclm-deficient mice, while the area of hyperproliferative epithelium as well as keratinocyte proliferation were affected in aged mice. These findings suggest that low levels of glutathione are sufficient for wound repair in young mice, but become rate-limiting upon aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Adamson B, Schwarz D, Klugston P, Gilmont R, Perry L, Fisher J, Lindblad W, Rees R (1996) Delayed repair: the role of glutathione in a rat incisional wound model. J Surg Res 62(2):159–164

    Article  CAS  PubMed  Google Scholar 

  2. Aktunc E, Ozacmak VH, Ozacmak HS, Barut F, Buyukates M, Kandemir O, Demircan N (2010) N-acetyl cysteine promotes angiogenesis and clearance of free oxygen radicals, thus improving wound healing in an alloxan-induced diabetic mouse model of incisional wound. Clin Exp Dermatol 35(8):902–909

    Article  CAS  PubMed  Google Scholar 

  3. Dalton TP, Chen Y, Schneider SN, Nebert DW, Shertzer HG (2004) Genetically altered mice to evaluate glutathione homeostasis in health and disease. Free Radic Biol Med 37(10):1511–1526

    Article  CAS  PubMed  Google Scholar 

  4. Gupta A, Singh RL, Raghubir R (2002) Antioxidant status during cutaneous wound healing in immunocompromised rats. Mol Cell Biochem 241(1–2):1–7

    Article  CAS  PubMed  Google Scholar 

  5. Hanada K, Gange RW, Connor MJ (1991) Effect of glutathione depletion on sunburn cell formation in the hairless mouse. J Invest Dermatol 96(6):838–840

    Article  CAS  PubMed  Google Scholar 

  6. Kumin A, Huber C, Rulicke T, Wolf E, Werner S (2006) Peroxiredoxin 6 is a potent cytoprotective enzyme in the epidermis. Am J Pathol 169(4):1194–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Meloni M, Nicolay JF (2003) Dynamic monitoring of glutathione redox status in UV-B irradiated reconstituted epidermis: effect of antioxidant activity on skin homeostasis. Toxicol In Vitro 17(5–6):609–613

    Article  CAS  PubMed  Google Scholar 

  8. Moor AN, Tummel E, Prather JL, Jung M, Lopez JJ, Connors S, Gould LJ (2014) Consequences of age on ischemic wound healing in rats: altered antioxidant activity and delayed wound closure. Age 36(2):733–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mudge BP, Harris C, Gilmont RR, Adamson BS, Rees RS (2002) Role of glutathione redox dysfunction in diabetic wounds. Wound Repair Regen 10(1):52–58

    Article  PubMed  Google Scholar 

  10. Rahman I, Kode A, Biswas SK (2006) Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 1(6):3159–3165

    Article  CAS  PubMed  Google Scholar 

  11. Schafer M, Werner S (2008) Oxidative stress in normal and impaired wound repair. Pharmacol Res 58(2):165–171

    Article  PubMed  Google Scholar 

  12. Sies H (1999) Glutathione and its role in cellular functions. Free Radic Biol Med 27(9–10):916–921

    Article  CAS  PubMed  Google Scholar 

  13. Telorack M, Meyer M, Ingold I, Conrad M, Bloch W, Werner S (2016) A glutathione-Nrf2-thioredoxin cross-talk ensures keratinocyte survival and efficient wound repair. PLoS Genet 12(1):e1005800

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yang J, Meyer M, Muller AK, Bohm F, Grose R, Dauwalder T, Verrey F, Kopf M, Partanen J, Bloch W, Ornitz DM, Werner S (2010) Fibroblast growth factor receptors 1 and 2 in keratinocytes control the epidermal barrier and cutaneous homeostasis. J Cell Biol 188(6):935–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang Y, Dieter MZ, Chen Y, Shertzer HG, Nebert DW, Dalton TP (2002) Initial characterization of the glutamate-cysteine ligase modifier subunit Gclm(−/−) knockout mouse. Novel model system for a severely compromised oxidative stress response. J Biol Chem 277(51):49446–49452

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Tamara Ramadan and Nikolas Epp, ETH Zürich, for invaluable experimental help and Dr. Timothy Dalton, University of Cincinnati, for Gclm knockout mice. This work was supported by the Swiss National Science Foundation (310030_132884), the Promedica Foundation, and the C.E.R.I.E.S. award (all to S.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Werner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telorack, M., Abplanalp, J. & Werner, S. Low levels of glutathione are sufficient for survival of keratinocytes after UV irradiation and for healing of mouse skin wounds. Arch Dermatol Res 308, 443–448 (2016). https://doi.org/10.1007/s00403-016-1660-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-016-1660-9

Keywords

Navigation