Skip to main content

Advertisement

Log in

Does hypoxia play a role in infantile hemangioma?

  • Review
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Infantile hemangioma (IH), the most common tumor of infancy, is characterized by rapid growth during infancy, followed by spontaneous involution over 5–10 years. Certain clinical observations have led to the suggestion that IH is triggered and maintained by hypoxia. We review the literature on the possible role of hypoxia in the etiology of IH, in particular, (1) the role of hypoxia inducible factor-1α (HIF-1α) and its downstream targets including GLUT-1 and VEGF; (2) the pathophysiological link between IH and retinopathy of prematurity; (3) hypoxic events in the early life including placental insufficiency, pre-eclampsia and low birthweight that have the potential to promote hypoxic stress; and (4) the evidence supporting the development of IH independent of HIF-1α. We also discuss these observations in the context of recent evidence of the crucial role of stem cells and the cytokines niche that governs their proliferation and inevitable differentiation, offering novel insights into the biology of IH. We propose that various triggers may simultaneously up-regulate HIF-1α, which is downstream of the renin–angiotensin system, specifically angiotensin II, which promotes production of HIF-1α. These developments shed light to the understanding of this enigmatic condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Al-Dahhan J, Haycock G, Chantler C, Stimmler L (1983) Sodium homeostasis in term and preterm neonates. I. Renal aspects. Arch Dis Child 58:335–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Amir J, Metzker A, Krikler R, Reisener S (1986) Strawberry hemangioma in preterm infants. Pediatr Dermatol 3:331–332

    Article  CAS  PubMed  Google Scholar 

  3. Barnés C, Huang S, Kaipainen A et al (2005) Evidence by molecular profiling for a placental origin of infantile hemangioma. Proc Natl Acad Sci 102:19097–190102

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bauland C, van Steensel M, Steijlen P et al (2010) Hemangioma in the newborn: increased incidence after chorionic villus smapling. Prenat Diagn 30:913–917

    Article  PubMed  Google Scholar 

  5. Bree A, Siegfried E, Sotelo-Avila C, Nahass G (2001) Infantile hemangiomas: speculation on placental trophoblastic origin. Arch Dermatol 137:573–577

    CAS  PubMed  Google Scholar 

  6. Burton B, Schulz C, Angle B, Burd L (1995) An increased incidence of haemangiomas in infants born following chorionic villus sampling (CVS). Prenat Diagn 15:209–214

    Article  CAS  PubMed  Google Scholar 

  7. Chamlin S, Haggstrom A, Drolet B et al (2007) Multicenter prospective study of ulcerated hemangiomas. J Pediatr 151:684–689

    Article  PubMed  Google Scholar 

  8. Chang LC, Haggstrom A, Drolet BA (2008) Growth characteristics of infantile hemangiomas: implications for managment. Pediatrics 122:360–367

    Article  PubMed  Google Scholar 

  9. Colonna V, Resta L, Napoli A, Bonifazi E (2010) Placental hypoxia and neonatal haemangioma: clinical and histological obervations. Brit J Dermatol 162:208–209

    Article  CAS  Google Scholar 

  10. Drolet B, Esterly N, Frieden I (1999) Hemangiomas in children. New Engl J Med 341:173–181

    Article  CAS  PubMed  Google Scholar 

  11. Drolet B, Frieden I (2010) Charecteristics of infantile hemangiomas as clues to pathogenesis: does hypoxia connect the dots? Arch Dermatol 146:1295–1299

    Article  PubMed  Google Scholar 

  12. Drolet B, Swanson E, Frieden I, Hemangioma Investigator Group (2008) Infantile hemangiomas: an emerging health issue linked to an increased rate of low birth weight infants. J Pediatr 153:712–715

    Article  PubMed  Google Scholar 

  13. Frieden I, Eichenfield L, Esterly N, Geronemus R, Mallory S (1997) Guidelines of care for hemangiomas of infancy. J Am Acad Dermatol 37:631–637

    Article  CAS  PubMed  Google Scholar 

  14. Gutierrez J, Avila L, Sosa G, Patron M (2007) Placental anomalies in children with infantile hemangioma. Pediatr Dermatol 24:353–355

    Article  Google Scholar 

  15. Haggstrom A, Lammer E, Schneider R, Marcucio R, Frieden I (2007) Prospective study of infantile hemangiomas: demographic, prenatal, and perinatal characteristics. J Pediatr 150:291–294

    Article  PubMed  Google Scholar 

  16. Herbert A, Ng H, Jessup W et al (2011) Hypoxia regulates the production and activity of glucose transporter-1 and indoleamine 2,3-dioxygenase in monocyte-derived endothelial-like cells: possible relevance to infantile haemangioma pathogenesis. Brit J Dermatol 164:308–315

    Article  CAS  Google Scholar 

  17. Heryanto B, Rogers P (2002) Regulation of endometrial endothelial cell proliferation by oestrogen and progesterone in the ovariectomized mouse. Reproduction 123:107–113

    Article  CAS  PubMed  Google Scholar 

  18. Hladunewich M, Karumanchi S, Lafayette R (2007) Pathophysiology of the clinical manifestations of preeclampsia. Clin J Am Soc Nephrol 2:543–549

    Article  PubMed  Google Scholar 

  19. Horri K, Drolet A, Baselga E et al (2010) Risk of hepatic hemangiomas in infants with large hemangiomas. Arch Dermatol 146:201–203

    Article  Google Scholar 

  20. Huang S, Tu H, Harney J et al (2000) Severe hypothyroidism caused by type 3 iodothyronine deiodinase in infantile hemangiomas. New Engl J Med 343:185–189

    Article  CAS  PubMed  Google Scholar 

  21. Hyland R, Komlósi K, Alleman B et al (2013) Infantile hemangiomas and retinopathy of prematurity: clues to the regulation of vasculogenesis. Eur J Pediatr 172:803–809

    Article  PubMed  PubMed Central  Google Scholar 

  22. Imanishi M, Tomita S, Ishizawa K et al (2014) Smooth muscle cell-specific HIF-1α deficiency suppresses angiotensin II-induced vascular remodelling in mice. Cardiovasc Res 102:460–468

    Article  CAS  PubMed  Google Scholar 

  23. Itinteang T, Brasch HD, Tan ST, Day DJ (2011) Expression of components of the renin–angiotensin system in proliferating infantile haemangioma may account for the propranolol-induced accelerated involution. J Plast Reconstr Aesth Surg 64:759–765

    Article  Google Scholar 

  24. Itinteang T, Chudakova D, Dunne J, Davis PF, Tan ST (2015) Expression of cathepsins B, D, and G in infantile haemangioma. Front Surg 2:26

    Article  PubMed  PubMed Central  Google Scholar 

  25. Itinteang T, Davis PF, Tan ST (2014) Treatment of infantile hemangioma with an ACE inhibitor: a paradigm shift. In: Onuigbo MAC (ed) ACE inhibitors: medical uses, mechanisms of action, potential adverse effects and related topics, vol 2. Nova Publishers Inc, New York, pp 323–332 (Chapter 20)

    Google Scholar 

  26. Itinteang T, Marsh R, Davis PF, Tan ST (2015) Angiotensin II causes cellular proliferation in infantile haemangioma via angiotensin II receptor 2 activation. J Clin Pathol 68:346–350

    Article  CAS  PubMed  Google Scholar 

  27. Itinteang T, Tan ST, Brasch HD, Day DJ (2010) Primitive mesodermal cells with a neural crest stem cell phenotype predominate proliferating infantile haemangioma. J Clin Pathol 63:771–776

    Article  PubMed  Google Scholar 

  28. Itinteang T, Tan ST, Brasch HD, Vishvanath A, Day DJ (2011) Primitive erythropoiesis in infantile haemangioma. Brit J Dermatol 164:1097–10100

    Article  CAS  Google Scholar 

  29. Itinteang T, Tan ST, Guthrie S et al (2011) A placental chorionic villous mesenchymal core cellular origin for infantile haemangioma. J Clin Pathol 64:870–874

    Article  PubMed  Google Scholar 

  30. Itinteang T, Tan ST, Brasch HD, Day JD (2010) Haemogenic endothelium in infantile haemangioma. J Clin Pathol 63:982–986

    Article  PubMed  Google Scholar 

  31. Itinteang T, Vishvanath A, Day DJ, Tan ST (2011) Mesenchymal stem cells in infantile haemangioma. J Clin Pathol 64:232–236

    Article  PubMed  Google Scholar 

  32. Itinteang T, Withers A, Davis PF, Tan ST (2014) Biology of infantile hemangioma. Front Surg 1:38

    Article  PubMed  PubMed Central  Google Scholar 

  33. Itinteang T, Withers A, Leadbitter P, Day DJ, Tan ST (2012) Reply: pharmacologic therapies for infantile hemangioma: is there a rational basis? Plast Reconstr Surg 129:e725–e757

    Article  Google Scholar 

  34. Johns A, Freay A, Fraser W, Rubanyi G (1996) Disruption of estrogen receptor gene prevents 17 beta estradiol-induced angiogenesis in transgenic mice. Endocrinology 137:4511–4513

    CAS  PubMed  Google Scholar 

  35. Ke Q, Costa M (2006) Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70:1469–1480

    Article  CAS  PubMed  Google Scholar 

  36. Khan Z, Boscolo E, Picard A et al (2008) Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice. J Clin Invest 118:2592–2599

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Khan Z, Melero-Martin J, Wu X et al (2006) Endothelial progenitor cells from infantile hemangioma and umbilical cord blood display unique cellular responses to endostatin. Blood 108:915–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kleinman M, Tepper O, Capla J et al (2003) Increased circulating AC133+ CD34+ endothelial progenitor cells in children with hemangioma. Lymphat Res Biol 1:301–307

    Article  PubMed  Google Scholar 

  39. Kleinman ME, Greives MR, Churgin SS et al (2007) Hypoxia-induced mediators of stem/progenitor cell trafficking are increased in children with hemangioma. Arterioscl Thromb Vasc Biol 27:2664–2670

    Article  CAS  PubMed  Google Scholar 

  40. Metry DW, Hawrot A, Altman C, Frieden I (2004) Association of solitary, segmental hemangiomas of the skin with visceral hemangiomatosis. Arch Dermatol 140:591–596

    Article  PubMed  Google Scholar 

  41. Mihm MC Jr, Nelson JS (2010) Hypothesis: the metastatic niche theory can elucidate infantile hemangioma development. J Cutan Pathol 37:83–87

    Article  PubMed  PubMed Central  Google Scholar 

  42. Morales D, McGowan K, Grant D et al (1995) Estrogen promotes angiogenic activity in human umbilical vein endothelial cells in vitro and in a murine model. Circulation 91:755–763

    Article  CAS  PubMed  Google Scholar 

  43. Mulliken JB, Glowacki J (1982) Hemangiomas and vascular malformations in infants and children: a classification based on endothelial characteristics. Plast Reconstr Surg 69:412–419

    Article  CAS  PubMed  Google Scholar 

  44. North P, Waner M, Mizeracki A et al (2001) A unique microvascular phenotype shared by juvenile hemangiomas and human placenta. Arch Dermatol 137:559–570

    Article  CAS  PubMed  Google Scholar 

  45. North P, Waner M, Mizeracki A, Mihm M (2000) GLUT1: a newly discovered immunohistochemical marker for juvenile hemangiomas. Hum Pathol 31:11–22

    Article  CAS  PubMed  Google Scholar 

  46. Pagé E, Robitaille G, Pouysségur J, Richard D (2002) Induction of hypoxia-inducible factor-1α by transcriptional and translational mechanisms. J Biol Chem 277:48403–48409

    Article  PubMed  Google Scholar 

  47. Picard A, Boscolo E, Khan Z et al (2008) IGF-2 and FLT-1/VEGF-R1 mRNA levels reveal distinctions and similarities between congenital and common infantile hemangioma. Pediatr Res 63:263–267

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pipkin F, Smales O, O’Callaghan (1981) Renin and angiotensin levels in children. Arch Dis Child 56:298–302

    Article  Google Scholar 

  49. Poisner A (1998) The human placental renin–angiotensin system. Front Neuroendocrinol 19:232–252

    Article  CAS  PubMed  Google Scholar 

  50. Praveen V, Vidavalur R, Rosenkrantz T, Hussain N (2009) Infantile hemangiomas and retinopathy of prematurity: possible association. Pediatrics 123:e484–e489

    Article  PubMed  Google Scholar 

  51. Przewratil P, Sitkiewicz A, Andrzejewska E (2010) Serum levels of basic fibroblastic growth factor (bFGF) in children with vascular anomalies: another insight into endothelial growth. J Clin Biochem 43:863–867

    Article  CAS  Google Scholar 

  52. Richer C, Hornych H, Amiel-Tison C, Giudicelli J (1977) Plasma renin activity and its postnatal development in preterm infants. Neonatology 31:301–304

    Article  CAS  Google Scholar 

  53. Ritter M, Dorrell M, Edmonds J, Friedlander M (2002) Insulin-like growth factor 2 and potential regulators of hemangioma growth and involution identified by large-scale expression analysis. Proc Natl Acad Sci 99:7455–7460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ritter M, Moreno S, Dorrell M et al (2003) Identifying potential regulators of infantile hemangioma progression through large-scale expression analysis: a possible role for the immune system and indoleamine 2,3 dioxygenase (IDO) during involution. Lymphat Biol 1:291–299

    Article  Google Scholar 

  55. Ritter M, Reinisch J, Friedlander S, Friedlander M (2006) Myeloid cells in infantile hemangioma. Am J Pathol 168:621–628

    Article  PubMed  PubMed Central  Google Scholar 

  56. Robin C, Bollerot K, Mendes S et al (2009) Human placenta is a potent hematopoietic niche containing hematopoietic stem and progenitor cells throughout development. Cell Stem Cell 5:385–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Scha¨ffer L, Vogel J, Breymann C, Gassmann M, Marti H (2006) Preserved placental oxygenation and development during severe systemic hypoxia. Am J Physiol Regul Integr Comp Physiol 290:844–851

    Article  Google Scholar 

  58. Schechter A (2008) Hemoglobin research and the origins of molecular medicine. Blood 112:3927–3938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sulyok E, Németh M, Tényi I et al (1979) Relationship between maturity, electrolyte balance and the function of the renin–angiotensin–aldosterone system in newborn infants. Neonatology 35:60–65

    Article  CAS  Google Scholar 

  60. Takahashi K, Mulliken JB, Kozakewich W, Rogers R, Folkman J, Ezekowitz A (1994) Cellular markers that distinguish the phases of hemangioma during infancy and childhood. J Clin Invest 93:2357–2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tan CES, Itinteang T, Leadbitter P et al (2015) Low-dose propranolol regimen for infantile haemangioma. J Paediatr Child Health 51:419–424

    PubMed  Google Scholar 

  62. Tan EMS, Chudakova D, Davis PF, Brasch HD, Itinteang T, Tan ST (2015) Characterisation of subpopulations of myeloid cells in infantile haemangioma. J Clin Pathol 68:571–574

    Article  CAS  PubMed  Google Scholar 

  63. Tan EMS, Itinteang T, Chudakova D et al (2015) Characterisation of lymphocyte sub-populations in infantile haemangioma. J Clin Pathol 68:812–818

    Article  PubMed  Google Scholar 

  64. Tan ST, Itinteang T, Day DJ, Mathy J, Leadbitter P (2012) Treatment of infantile haemangioma with captopril. Brit J Dermatol 167:619–624

    Article  CAS  Google Scholar 

  65. Tan ST, Velickovic M, Ruger B, Davis PF (2000) Cellular and extracellular markers of hemangioma. Plast Reconstr Surg 106:529–538

    Article  CAS  PubMed  Google Scholar 

  66. Tan ST, Wallis R, He Y, Davis PF (2004) Mast cells and hemangioma. Plast Reconstr Surg 113:999–1011

    Article  PubMed  Google Scholar 

  67. Van Handel B, Prashad S, Hassanzadeh-Kiabi N et al (2010) The first trimester human placenta is a site for terminal maturation of primitive erythroid cells. Blood 116:3321–3330

    Article  PubMed  PubMed Central  Google Scholar 

  68. Velasco-Hernandez T, Hyrenius-Wittsten A, Rehn M, Bryder D, Cammenga J (2014) HIF-1α can act as a tumor suppressor gene in murine acute myeloid leukemia. Blood 124:3597–35607

    Article  CAS  PubMed  Google Scholar 

  69. Waner M, North P, Scherer K, Frieden I, Waner A, Mihm M (2003) The nonrandom distribution of facial hemangiomas. Arch Dermatol 139:869–875

    Article  PubMed  Google Scholar 

  70. Winter P, Itinteang T, Leadbitter P, Fitzjohn T, Tan ST (2015) PHACE(S) syndrome with absent intracranial internal carotid artery and anomalous circle of Willis. J Craniofac Surg 26:e315–e317

    Article  PubMed  Google Scholar 

  71. Winter PR, Itinteang T, Leadbitter P et al (2016) PHACE syndrome—clinical features, aetiology and management. Acta Paediatrica 105:145–153

    Article  PubMed  Google Scholar 

  72. Yu Y, Flint A, Mulliken JB, Wu J, Bischoff J (2003) Endothelial progenitor cells in infantile hemangioma. Blood 103:1373–13735

    Article  PubMed  Google Scholar 

  73. Yu Y, Fuhr J, Boye E et al (2006) Mesenchymal stem cells and adipogenesis in hemangioma involution. Stem Cells 24:1605–1612

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swee T. Tan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Funding

None.

Ethical approval

For a review article formal ethical approval is not required.

Informed consent

Images of patients depicted in this article were reproduced from published works with permission.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Jong, S., Itinteang, T., Withers, A.H.J. et al. Does hypoxia play a role in infantile hemangioma?. Arch Dermatol Res 308, 219–227 (2016). https://doi.org/10.1007/s00403-016-1635-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-016-1635-x

Keywords

Navigation