Skip to main content

Advertisement

Log in

Investigation of antibacterial activity of aspidin BB against Propionibacterium acnes

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In the present study, antibacterial activity of four kinds of phloroglucinol derivatives extracted from Dryopteris fragrans (L.) Schott against S. aureus, S. epidermidis and P. acnes has been tested. Aspidin BB exerted the strongest antibacterial activity with minimal inhibition concentration (MIC) values ranging from 7.81 to 15.63 μg/mL. The time-kill assay indicated that aspidin BB could kill P. acnes completely at 2 MIC (MBC) within 4 h. By using AFM, we demonstrated extensive cell surface alterations of aspidin BB-treated P. acnes. SDS-PAGE of supernatant proteins and lipid peroxidation results showed that aspidin BB dose-dependently affected membrane permeability of P. acnes. DNA damage and protein degradation of P. acnes were also verified. SDS-PAGE of precipitated proteins revealed possible targets of aspidin BB, i.e., heat shock proteins (26 kDa) and lipase (33 kDa) which could all cause inflammation. Aspidin BB also seriously increased the inhibition rate of lipase activity from 10.20 to 65.20 % to possibly inhibit the inflammation. In conclusions, the effective constituents of D. fragrans (L.) Schott to treat acne might be phloroglucinol derivatives including aspidin BB, aspidin PB, aspidinol and dryofragin. Among this, aspidin BB inhibited the growth of P. acnes by disrupting their membrane, DNA and proteins and finally leaded to the cell death. The obtained data highlighted the potential of using aspidin BB as an alternative treatment for acne vulgaris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MIC:

Minimal inhibition concentration

MBC:

Minimal bactericidal concentration

NPL:

Nitrophenyl laurate

AFM:

Atomic force microscopy

RMS:

Root-mean-square

TBA:

Thiobarbituric acid

MDA:

Malonyldialdehyde

References

  1. Acne AO (2003) Pathological mechanisms of acne with special emphasis on Propionibacterium acnes and related therapy. Acta Derm Venereol 83(4):241–248

    Article  Google Scholar 

  2. Arican O, Kurutas EB, Sasmaz S (2005) Oxidative stress in patients with acne vulgaris. Mediators Inflamm 6:380–384

    Article  Google Scholar 

  3. Bojar RA, Holland KT (2004) Acne and Propionibacterium acnes. Clin Dermatol 22(5):375–379

    Article  PubMed  Google Scholar 

  4. Braga PC, Ricci D (1998) Atomic force microscopy: application to investigation of Escherichia coli morphology before and after exposure to cefodizime. Antimicrob Agents Chemother 42(1):18–22

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Brüggemann H, Henne A, Hoster F, Liesegang H, Wiezer A, Strittmatter A, Hujer S, Dürre P, Gottschalk G (2004) The complete genome sequence of Propionibacterium acnes, a commensal of human skin. Science 305(5684):671–673

    Article  PubMed  Google Scholar 

  6. Citron DM, Kwok YY, Appleman MD (2005) In vitro activity of oritavancin (LY333328), vancomycin, clindamycin, and metronidazole against Clostridium perfringens, Propionibacterium acnes, and anaerobic Gram-positive cocci. Anaerobe. 11(1):93–95

    Article  CAS  PubMed  Google Scholar 

  7. Fu Y, Chen L, Zu Y, Liu Z, Liu X, Liu Y, Yao L, Efferth T (2009) The antibacterial activity of clove essential oil against Propionibacterium acnes and its mechanism of action. Arch Dermatol 145(1):86–88

    Article  PubMed  Google Scholar 

  8. He F, Yang Y, Yang G, Yu L (2010) Studies on antibacterial activity and antibacterial mechanism of a novel polysaccharide from Streptomyces virginia H03. Food Control 21(9):1257–1262

    Article  CAS  Google Scholar 

  9. Ho P, Chow K, Lai EL, Law PY, Chan P, Ho AY, Ng T, Yam W (2012) Clonality and antimicrobial susceptibility of Staphylococcus aureus and methicillin-resistant S. aureus isolates from food animals and other animals. J Clin Microbiol 50(11):3735–3737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Humphries KM, Szweda LI (1998) Selective inactivation of α-ketoglutarate dehydrogenase and pyruvate dehydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal. Biochemistry 37(45):15835–15841

    Article  CAS  PubMed  Google Scholar 

  11. Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radical Bio Med. 51(10):1872–1881

    Article  CAS  Google Scholar 

  12. Li XJ, Fu YJ, Luo M, Wang W, Zhang L, Zhao CJ, Zu YG (2012) Preparative separation of dryofragin and aspidin BB from Dryopteris fragrans extracts by macroporous resin column chromatography. J Pharm Biomed Anal 61:199–206

    Article  CAS  PubMed  Google Scholar 

  13. Nakatsuji T, Kao MC, Fang JY, Zouboulis CC, Zhang L, Gallo RL, Huang CM (2009) Antimicrobial property of lauric acid against Propionibacterium acnes: its therapeutic potential for inflammatory acne vulgaris. J Invest Dermatol. 129(10):2480–2488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Navarre WW, Schneewind O (1999) Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63(1):174–229

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Park J, Lee J, Jung E, Park Y, Kim K, Park B, Jung K, Park E, Kim J, Park D (2004) In vitro antibacterial and anti-inflammatory effects of honokiol and magnolol against Propionibacterium sp. Eur J Pharmacol 496(1–3):189–195

    Article  CAS  PubMed  Google Scholar 

  16. Ruiz C, Falcocchio S, Xoxi E, Javier Pastor FI, Diaz P, Saso L (2004) Activation and inhibition of Candida rugosa and Bacillus-related lipases by saturated fatty acids, evaluated by a new colorimetric microassay. Biochim Biophys Acta 1672(3):184–191

    Article  CAS  PubMed  Google Scholar 

  17. Schäffer C, Messner P (2005) The structure of secondary cell wall polymers: how Gram-positive bacteria stick their cell walls together. Microbiology 151(Pt 3):643–651

    Article  PubMed  Google Scholar 

  18. Singh IP, Sidana J, Bansal P, Foley WJ (2009) Phloroglucinol compounds of therapeutic interest: global patent and technology status. Expert Opin Ther Pat 19(6):847–866

    Article  CAS  PubMed  Google Scholar 

  19. Toyoda M, Morohashi M (2011) Pathogenesis of acne. Medical Electron Microscopy. 34(1):29–40

    Article  Google Scholar 

  20. Wang Y, Song R, Shen J (2003) Understanding tapping-mode atomic force microscopy data on the surface of soft block copolymers. Appl Surf Sci 530(3):136–148

    Article  CAS  Google Scholar 

  21. Weaber K, Freedman R, Eudy WW (1971) Tetracycline inhibition of a lipase from Corynebacterium acnes. Appl Microbiol 21(4):639–642

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Zu Y, Liu X, Fu Y, Wu N, Kong Y, Wink M (2010) Chemical composition of the SFE-CO2 extracts from Cajanus cajan(L.) Huth and their antimicrobial activity in vitro and in vivo. Phytomedicine 17(14):1095–1101

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports by Application Technology Research and Development Program of Harbin (2013AA3BS014) and Special Fund of National Natural Science Foundation of China (31270618).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-jie Fu.

Additional information

C. Gao and N. Guo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Guo, N., Li, N. et al. Investigation of antibacterial activity of aspidin BB against Propionibacterium acnes . Arch Dermatol Res 308, 79–86 (2016). https://doi.org/10.1007/s00403-015-1603-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-015-1603-x

Keywords

Navigation