Skip to main content

Advertisement

Log in

Phytochemical modulation of the Akt/mTOR pathway and its potential use in cutaneous disease

  • Review
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

The mechanistic target of rapamycin (mTOR) is involved in the regulation of cellular growth, proliferation, lipid synthesis, and protein translation. The mTOR pathway involves two complexes: the mechanistic target of rapamycin complex 1 (mTORC1) and the mechanistic target of rapamycin complex 2 (mTORC2). Both mTOR complexes have been implicated in the development and progression of various skin diseases including melanoma, psoriasis, and acne vulgaris. Here, we review the role of both mTORC1 and mTORC2 as well as their upstream modulators, phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt), and their downstream targets in various dermatologic diseases. Phytochemicals, plant-derived naturally occurring compounds, have been shown to regulate the mTOR pathway and may serve as novel therapeutic agents in dermatological disease. Here, we review phytochemicals in the context of the mTOR pathway and their potential use in cutaneous disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y (2004) Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 24(5A):2783–2840

    CAS  PubMed  Google Scholar 

  2. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P et al (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15(23):6541–6551

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB et al (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7(4):261–269

    Article  CAS  PubMed  Google Scholar 

  4. Baba M, Hong SB, Sharma N, Warren MB, Nickerson ML, Iwamatsu A et al (2006) Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling. Proc Natl Acad Sci USA 103(42):15552–15557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Beevers CS, Chen L, Liu L, Luo Y, Webster NJ, Huang S (2009) Curcumin disrupts the mammalian target of rapamycin–raptor complex. Cancer Res 69(3):1000–1008

    Article  CAS  PubMed  Google Scholar 

  6. Beevers CS, Li F, Liu L, Huang S (2006) Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells. Int J Cancer 119(4):757–764

    Article  CAS  PubMed  Google Scholar 

  7. Bhatt AP, Damania B (2012) AKTivation of PI3K/AKT/mTOR signaling pathway by KSHV. Front Immunol 3:401

    PubMed Central  PubMed  Google Scholar 

  8. Bhattacharya S, Darjatmoko SR, Polans AS (2011) Resveratrol modulates the malignant properties of cutaneous melanoma through changes in the activation and attenuation of the antiapoptotic protooncogenic protein Akt/PKB. Melanoma Res 21(3):180–187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Brown EJ, Beal PA, Keith CT, Chen J, Shin TB, Schreiber SL (1995) Control of p70 s6 kinase by kinase activity of FRAP in vivo. Nature 377(6548):441–446

    Article  CAS  PubMed  Google Scholar 

  10. Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ et al (1997) Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277(5322):99–101

    Article  CAS  PubMed  Google Scholar 

  11. Buerger C, Malisiewicz B, Eiser A, Hardt K, Boehncke WH (2013) Mammalian target of rapamycin and its downstream signalling components are activated in psoriatic skin. Br J Dermatol 169(1):156–159

    Article  CAS  PubMed  Google Scholar 

  12. Carr TD, DiGiovanni J, Lynch CJ, Shantz LM (2012) Inhibition of mTOR suppresses UVB-induced keratinocyte proliferation and survival. Cancer Prev Res (Phila) 5(12):1394–1404

    Article  CAS  Google Scholar 

  13. Chen L, Shen Z, Wang G, Fan P, Liu Y (2008) Dynamic frequency of CD4 + CD25 + Foxp3 + Treg cells in psoriasis vulgaris. J Dermatol Sci 51(3):200–203

    Article  CAS  PubMed  Google Scholar 

  14. Chen L, Wu J, Pier E, Zhao Y, Shen Z (2013) mTORC2-PKBalpha/Akt1 Serine 473 phosphorylation axis is essential for regulation of FOXP3 stability by chemokine CCL3 in psoriasis. J Invest Dermatol 133(2):418–428

    Article  CAS  PubMed  Google Scholar 

  15. Chen SJ, Nakahara T, Takahara M, Kido M, Dugu L, Uchi H et al (2009) Activation of the mammalian target of rapamycin signalling pathway in epidermal tumours and its correlation with cyclin-dependent kinase 2. Br J Dermatol 160(2):442–445

    Article  PubMed  Google Scholar 

  16. Chiou YS, Sang S, Cheng KH, Ho CT, Wang YJ, Pan MH (2013) Peracetylated (−)-epigallocatechin-3-gallate (AcEGCG) potently prevents skin carcinogenesis by suppressing the PKD1-dependent signaling pathway in CD34+ skin stem cells and skin tumors. Carcinogenesis 34(6):1315–1322

    Article  CAS  PubMed  Google Scholar 

  17. Chung JH, Han JH, Hwang EJ, Seo JY, Cho KH, Kim KH et al (2003) Dual mechanisms of green tea extract (EGCG)-induced cell survival in human epidermal keratinocytes. FASEB J 17(13):1913–1915

    CAS  PubMed  Google Scholar 

  18. Curatolo P, Moavero R (2012) mTOR inhibitors in tuberous sclerosis complex. Curr Neuropharmacol 10(4):404–415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Cybulski N, Polak P, Auwerx J, Ruegg MA, Hall MN (2009) mTOR complex 2 in adipose tissue negatively controls whole-body growth. Proc Natl Acad Sci USA 106(24):9902–9907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Datta Mitra A, Raychaudhuri SP, Abria CJ, Mitra A, Wright R, Ray R et al (2013) 1alpha,25-dihydroxyvitamin-D3-3-bromoacetate regulates AKT/mTOR signaling cascades: a therapeutic agent for psoriasis. J Invest Dermatol 133(6):1556–1564

    Article  PubMed  Google Scholar 

  21. Dujic J, Kippenberger S, Hoffmann S, Ramirez-Bosca A, Miquel J, Diaz-Alperi J et al (2007) Low concentrations of curcumin induce growth arrest and apoptosis in skin keratinocytes only in combination with UVA or visible light. J Invest Dermatol 127(8):1992–2000

    Article  CAS  PubMed  Google Scholar 

  22. Einspahr JG, Calvert V, Alberts DS, Curiel-Lewandrowski C, Warneke J, Krouse R et al (2012) Functional protein pathway activation mapping of the progression of normal skin to squamous cell carcinoma. Cancer Prev Res (Phila) 5(3):403–413

    Article  CAS  Google Scholar 

  23. Espana A, Modol T, Gil MP, Lopez-Zabalza MJ (2013) Neural nitric oxide synthase participates in pemphigus vulgaris acantholysis through upregulation of Rous sarcoma, mammalian target of rapamycin and focal adhesion kinase. Exp Dermatol 22(2):125–130

    Article  CAS  PubMed  Google Scholar 

  24. Feldmeyer L, Hofbauer GF, Boni T, French LE, Hafner J (2012) Mammalian target of rapamycin (mTOR) inhibitors slow skin carcinogenesis, but impair wound healing. Br J Dermatol 166(2):422–424

    Article  CAS  PubMed  Google Scholar 

  25. Garcia-Martinez JM, Alessi DR (2008) mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 416(3):375–385

    Article  CAS  PubMed  Google Scholar 

  26. Gray-Schopfer VC, da Rocha Dias S, Marais R (2005) The role of B-RAF in melanoma. Cancer Metastasis Rev 24(1):165–183

    Article  CAS  PubMed  Google Scholar 

  27. Guertin DA, Sabatini DM (2009) The pharmacology of mTOR inhibition. Sci Signal 2((67)):pe24

    PubMed  Google Scholar 

  28. Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J et al (2006) Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 11(6):859–871

    Article  CAS  PubMed  Google Scholar 

  29. Han W, Ming M, He YY (2011) Caffeine promotes ultraviolet B-induced apoptosis in human keratinocytes without complete DNA repair. J Biol Chem 286(26):22825–22832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Hartman TR, Nicolas E, Klein-Szanto A, Al-Saleem T, Cash TP, Simon MC et al (2009) The role of the Birt–Hogg–Dube protein in mTOR activation and renal tumorigenesis. Oncogene 28(13):1594–1604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Huang C, Li J, Ke Q, Leonard SS, Jiang BH, Zhong XS et al (2002) Ultraviolet-induced phosphorylation of p70(S6K) at Thr(389) and Thr(421)/Ser(424) involves hydrogen peroxide and mammalian target of rapamycin but not Akt and atypical protein kinase C. Cancer Res 62(20):5689–5697

    CAS  PubMed  Google Scholar 

  32. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115(5):577–590

    Article  CAS  PubMed  Google Scholar 

  33. Iqbal MA, Bamezai RN (2012) Resveratrol inhibits cancer cell metabolism by down regulating pyruvate kinase M2 via inhibition of mammalian target of rapamycin. PLoS One 7(5):e36764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY et al (2006) SIN1/MIP1 maintains rictor–mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127(1):125–137

    Article  CAS  PubMed  Google Scholar 

  35. Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A et al (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6(11):1122–1128

    Article  CAS  PubMed  Google Scholar 

  36. Jiang H, Shang X, Wu H, Gautam SC, Al-Holou S, Li C et al (2009) Resveratrol downregulates PI3K/Akt/mTOR signaling pathways in human U251 glioma cells. J Exp Ther Oncol 8(1):25–33

    PubMed Central  PubMed  Google Scholar 

  37. Karayannopoulou G, Euvrard S, Kanitakis J (2013) Differential expression of p-mTOR in cutaneous basal and squamous cell carcinomas likely explains their different response to mTOR inhibitors in organ-transplant recipients. Anticancer Res 33(9):3711–3714

    PubMed  Google Scholar 

  38. Karbowniczek M, Spittle CS, Morrison T, Wu H, Henske EP (2008) mTOR is activated in the majority of malignant melanomas. J Invest Dermatol 128(4):980–987

    Article  CAS  PubMed  Google Scholar 

  39. Kwon OS, Han JH, Yoo HG, Chung JH, Cho KH, Eun HC et al (2007) Human hair growth enhancement in vitro by green tea epigallocatechin-3-gallate (EGCG). Phytomedicine 14(7–8):551–555

    Article  CAS  PubMed  Google Scholar 

  40. Lahat G, Dhuka AR, Hallevi H, Xiao L, Zou C, Smith KD et al (2010) Angiosarcoma: clinical and molecular insights. Ann Surg 251(6):1098–1106

    Article  PubMed  Google Scholar 

  41. Laplante M, Sabatini DM (2009) An emerging role of mTOR in lipid biosynthesis. Curr Biol 19(22):R1046–R1052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Lee DF, Kuo HP, Chen CT, Hsu JM, Chou CK, Wei Y et al (2007) IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130(3):440–455

    Article  CAS  PubMed  Google Scholar 

  44. Levidou G, Siakantaris M, Papadaki T, Papadavid E, Vassilakopoulos TP, Angelopoulou MK et al (2013) A comprehensive immunohistochemical approach of AKT/mTOR pathway and p-STAT3 in mycosis fungoides. J Am Acad Dermatol 69(3):375–384

    Article  CAS  PubMed  Google Scholar 

  45. Liu M, Wilk SA, Wang A, Zhou L, Wang RH, Ogawa W et al (2010) Resveratrol inhibits mTOR signaling by promoting the interaction between mTOR and DEPTOR. J Biol Chem 285(47):36387–36394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Liu Z, Antalek M, Nguyen L, Li X, Tian X, Le A et al (2013) The effect of gartanin, a naturally occurring xanthone in mangosteen juice, on the mTOR pathway, autophagy, apoptosis, and the growth of human urinary bladder cancer cell lines. Nutr Cancer 65(Suppl 1):68–77

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Loffing J, Flores SY, Staub O (2006) Sgk kinases and their role in epithelial transport. Annu Rev Physiol 68:461–490

    Article  CAS  PubMed  Google Scholar 

  48. Lu ZH, Shvartsman MB, Lee AY, Shao JM, Murray MM, Kladney RD et al (2010) Mammalian target of rapamycin activator RHEB is frequently overexpressed in human carcinomas and is critical and sufficient for skin epithelial carcinogenesis. Cancer Res 70(8):3287–3298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Machado D, Shishido SM, Queiroz KC, Oliveira DN, Faria AL, Catharino RR et al (2013) Irradiated riboflavin diminishes the aggressiveness of melanoma in vitro and in vivo. PLoS One 8(1):e54269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Melnik BC (2010) FoxO1––the key for the pathogenesis and therapy of acne? J Dtsch Dermatol Ges 8(2):105–114

    PubMed  Google Scholar 

  51. Mitchell TJ, John S (2005) Signal transducer and activator of transcription (STAT) signalling and T-cell lymphomas. Immunology 114(3):301–312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Miwa S, Sugimoto N, Shirai T, Hayashi K, Nishida H, Ohnari I et al (2011) Caffeine activates tumor suppressor PTEN in sarcoma cells. Int J Oncol 39(2):465–472

    CAS  PubMed  Google Scholar 

  53. Miwa S, Sugimoto N, Yamamoto N, Shirai T, Nishida H, Hayashi K et al (2012) Caffeine induces apoptosis of osteosarcoma cells by inhibiting AKT/mTOR/S6K, NF-kappaB and MAPK pathways. Anticancer Res 32(9):3643–3649

    CAS  PubMed  Google Scholar 

  54. Molhoek KR, Brautigan DL, Slingluff CL Jr (2005) Synergistic inhibition of human melanoma proliferation by combination treatment with B-Raf inhibitor BAY43-9006 and mTOR inhibitor rapamycin. J Transl Med 3:39

    Article  PubMed Central  PubMed  Google Scholar 

  55. Montaner S, Sodhi A, Pece S, Mesri EA, Gutkind JS (2001) The Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor promotes endothelial cell survival through the activation of Akt/protein kinase B. Cancer Res 61(6):2641–2648

    CAS  PubMed  Google Scholar 

  56. Murai A, Abou Asa S, Kodama A, Sakai H, Hirata A, Yanai T (2012) Immunohistochemical analysis of the Akt/mTOR/4E-BP1 signalling pathway in canine haemangiomas and haemangiosarcomas. J Comp Pathol 147(4):430–440

    Article  CAS  PubMed  Google Scholar 

  57. Nardi V, Song Y, Santamaria-Barria JA, Cosper AK, Lam Q, Faber AC et al (2012) Activation of PI3K signaling in Merkel cell carcinoma. Clin Cancer Res 18(5):1227–1236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Nave BT, Ouwens M, Withers DJ, Alessi DR, Shepherd PR (1999) Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J 344(Pt 2):427–431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Nomura M, Ichimatsu D, Moritani S, Koyama I, Dong Z, Yokogawa K et al (2005) Inhibition of epidermal growth factor-induced cell transformation and Akt activation by caffeine. Mol Carcinog 44(1):67–76

    Article  CAS  PubMed  Google Scholar 

  60. Olson ER, Melton T, Dickinson SE, Dong Z, Alberts DS, Bowden GT (2010) Quercetin potentiates UVB-induced c-Fos expression: implications for its use as a chemopreventive agent. Cancer Prev Res (Phila) 3(7):876–884

    Article  CAS  Google Scholar 

  61. Ormerod AD, Shah SA, Copeland P, Omar G, Winfield A (2005) Treatment of psoriasis with topical sirolimus: preclinical development and a randomized, double-blind trial. Br J Dermatol 152(4):758–764

    Article  CAS  PubMed  Google Scholar 

  62. Ou JM, Qui MK, Dai YX, Dong Q, Shen J, Dong P et al (2012) Combined blockade of AKT/mTOR pathway inhibits growth of human hemangioma via downregulation of proliferating cell nuclear antigen. Int J Immunopathol Pharmacol 25(4):945–953

    CAS  PubMed  Google Scholar 

  63. Perry B, Banyard J, McLaughlin ER, Watnick R, Sohn A, Brindley DN et al (2007) AKT1 overexpression in endothelial cells leads to the development of cutaneous vascular malformations in vivo. Arch Dermatol 143(4):504–506

    Article  PubMed  Google Scholar 

  64. Phillips JM, Clark C, Herman-Ferdinandez L, Moore-Medlin T, Rong X, Gill JR et al (2011) Curcumin inhibits skin squamous cell carcinoma tumor growth in vivo. Otolaryngol Head Neck Surg 145(1):58–63

    Article  PubMed  Google Scholar 

  65. Potter CJ, Pedraza LG, Xu T (2002) Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 4(9):658–665

    Article  CAS  PubMed  Google Scholar 

  66. Pretel M, Espana A, Marquina M, Pelacho B, Lopez-Picazo JM, Lopez-Zabalza MJ (2009) An imbalance in Akt/mTOR is involved in the apoptotic and acantholytic processes in a mouse model of pemphigus vulgaris. Exp Dermatol 18(9):771–780

    Article  CAS  PubMed  Google Scholar 

  67. Reitamo S, Spuls P, Sassolas B, Lahfa M, Claudy A, Griffiths CE (2001) Efficacy of sirolimus (rapamycin) administered concomitantly with a subtherapeutic dose of cyclosporin in the treatment of severe psoriasis: a randomized controlled trial. Br J Dermatol 145(3):438–445

    Article  CAS  PubMed  Google Scholar 

  68. Romeo Y, Moreau J, Zindy PJ, Saba-El-Leil M, Lavoie G, Dandachi F et al (2013) RSK regulates activated BRAF signalling to mTORC1 and promotes melanoma growth. Oncogene 32(24):2917–2926

    Article  CAS  PubMed  Google Scholar 

  69. Saiki S, Sasazawa Y, Imamichi Y, Kawajiri S, Fujimaki T, Tanida I et al (2011) Caffeine induces apoptosis by enhancement of autophagy via PI3K/Akt/mTOR/p70S6K inhibition. Autophagy 7(2):176–187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H et al (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14(14):1296–1302

    Article  CAS  PubMed  Google Scholar 

  71. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF et al (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22(2):159–168

    Article  CAS  PubMed  Google Scholar 

  72. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science 307(5712):1098–1101

    Article  CAS  PubMed  Google Scholar 

  73. Sehgal SN, Baker H, Vezina C (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot (Tokyo) 28(10):727–732

    Article  CAS  Google Scholar 

  74. Smith TM, Gilliland K, Clawson GA, Thiboutot D (2008) IGF-1 induces SREBP-1 expression and lipogenesis in SEB-1 sebocytes via activation of the phosphoinositide 3-kinase/Akt pathway. J Invest Dermatol 128(5):1286–1293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Sodhi A, Montaner S, Patel V, Gomez-Roman JJ, Li Y, Sausville EA et al (2004) Akt plays a central role in sarcomagenesis induced by Kaposi’s sarcoma herpesvirus-encoded G protein-coupled receptor. Proc Natl Acad Sci USA 101(14):4821–4826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Soliman GA (2011) The integral role of mTOR in lipid metabolism. Cell Cycle 10(6):861–862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Squarize CH, Castilho RM, Bugge TH, Gutkind JS (2010) Accelerated wound healing by mTOR activation in genetically defined mouse models. PLoS One 5(5):e10643

    Article  PubMed Central  PubMed  Google Scholar 

  78. Syed DN, Afaq F, Mukhtar H (2012) Differential activation of signaling pathways by UVA and UVB radiation in normal human epidermal keratinocytes. Photochem Photobiol 88(5):1184–1190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Tang Q, Li G, Wei X, Zhang J, Chiu JF, Hasenmayer D et al (2013) Resveratrol-induced apoptosis is enhanced by inhibition of autophagy in esophageal squamous cell carcinoma. Cancer Lett 336(2):325–337

    Article  CAS  PubMed  Google Scholar 

  80. Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J (2003) Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13(15):1259–1268

    Article  CAS  PubMed  Google Scholar 

  81. Tomlinson CC, Damania B (2004) The K1 protein of Kaposi’s sarcoma-associated herpesvirus activates the Akt signaling pathway. J Virol 78(4):1918–1927

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Tsai ML, Lai CS, Chang YH, Chen WJ, Ho CT, Pan MH (2012) Pterostilbene, a natural analogue of resveratrol, potently inhibits 7,12-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin carcinogenesis. Food Funct 3(11):1185–1194

    Article  CAS  PubMed  Google Scholar 

  83. Van Aller GS, Carson JD, Tang W, Peng H, Zhao L, Copeland RA et al (2011) Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor. Biochem Biophys Res Commun 406(2):194–199

    Article  PubMed  Google Scholar 

  84. Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9(3):316–323

    Article  CAS  PubMed  Google Scholar 

  85. Vingtdeux V, Chandakkar P, Zhao H, d’Abramo C, Davies P, Marambaud P (2011) Novel synthetic small-molecule activators of AMPK as enhancers of autophagy and amyloid-beta peptide degradation. FASEB J 25(1):219–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Wang L, Damania B (2008) Kaposi’s sarcoma-associated herpesvirus confers a survival advantage to endothelial cells. Cancer Res 68(12):4640–4648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Wang L, Dittmer DP, Tomlinson CC, Fakhari FD, Damania B (2006) Immortalization of primary endothelial cells by the K1 protein of Kaposi’s sarcoma-associated herpesvirus. Cancer Res 66(7):3658–3666

    Article  CAS  PubMed  Google Scholar 

  88. Yokogami K, Wakisaka S, Avruch J, Reeves SA (2000) Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Curr Biol 10(1):47–50

    Article  CAS  PubMed  Google Scholar 

  89. Young CN, Koepke JI, Terlecky LJ, Borkin MS, Boyd Savoy L, Terlecky SR (2008) Reactive oxygen species in tumor necrosis factor-alpha-activated primary human keratinocytes: implications for psoriasis and inflammatory skin disease. J Invest Dermatol 128(11):2606–2614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Zhang Q, Kelly AP, Wang L, French SW, Tang X, Duong HS et al (2006) Green tea extract and (−)-epigallocatechin-3-gallate inhibit mast cell-stimulated type I collagen expression in keloid fibroblasts via blocking PI-3K/AkT signaling pathways. J Invest Dermatol 126(12):2607–2613

    Article  CAS  PubMed  Google Scholar 

  91. Zhu X, Liu Q, Wang M, Liang M, Yang X, Xu X et al (2011) Activation of Sirt1 by resveratrol inhibits TNF-alpha induced inflammation in fibroblasts. PLoS One 6(11):e27081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Zinzalla V, Stracka D, Oppliger W, Hall MN (2011) Activation of mTORC2 by association with the ribosome. Cell 144(5):757–768

    Article  CAS  PubMed  Google Scholar 

Related articles recently published in Archives of Dermatological Research (selected by the journal’s editorial staff)

  1. Deng S, May BH, Zhang AL, Lu C, Xue CC (2014) Phytotherapy in the management of psoriasis: a review of the efficacy and safety of oral interventions and the pharmacological actions of the main plants. Arch Dermatol Res 306:211–229

    Article  CAS  PubMed  Google Scholar 

  2. Deng S, May BH, Zhang AL, Lu C, Xue CC (2013) Topical herbal medicine combined with pharmacotherapy for psoriasis: a systematic review and meta-analysis. Arch Dermatol Res 305:179–189

    Article  CAS  PubMed  Google Scholar 

  3. Lee J, Jung E, Kim YS, Park D, Toyama K, Date A, Lee J (2013) Phloridzin isolated from Acanthopanax senticosus promotes proliferation of alpha6 integrin (CD 49f) and beta1 integrin (CD29) enriched for a primary keratinocyte population through the ERK-mediated mTOR pathway. Arch Dermatol Res 305:747–754

    Article  CAS  PubMed  Google Scholar 

  4. Peramo A, Marcelo CL (2013) Visible effects of rapamycin (sirolimus) on human skin explants in vitro. Arch Dermatol Res 305:163–171

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interests

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja K. Sivamani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leo, M.S., Sivamani, R.K. Phytochemical modulation of the Akt/mTOR pathway and its potential use in cutaneous disease. Arch Dermatol Res 306, 861–871 (2014). https://doi.org/10.1007/s00403-014-1480-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-014-1480-8

Keywords

Navigation