Skip to main content


Log in

Isotretinoin therapy changes the expression of antimicrobial peptides in acne vulgaris

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript


In acne vulgaris, antimicrobial peptides (AMPs) could play a dual role; i.e., protective by acting against Propionibacterium acnes, pro-inflammatory by acting as signalling molecules. The cutaneous expression of 15 different AMPs was investigated in acne patients; furthermore, the impact of isotretinoin therapy on AMP expression was analysed in skin biopsies from 13 patients with acne vulgaris taken before, during and after a 6-month treatment cycle with isotretinoin using quantitative real-time polymerase chain reaction. Cutaneous expression of the AMPs cathelicidin, human β-defensin-2 (HBD-2), lactoferrin, lysozyme, psoriasin (S100A7), koebnerisin (S100A15), and RNase 7 was upregulated in untreated acne vulgaris, whereas α-defensin-1 (HNP-1) was downregulated compared to controls. While relative expression levels of cathelicidin, HBD-2, lactoferrin, psoriasin (S100A7), and koebnerisin (S100A15) decreased during isotretinoin treatment, only those of cathelicidin and koebnerisin returned to normal after 6 months of isotretinoin therapy. The increased expression of lysozyme and RNase 7 remained unaffected by isotretinoin treatment. The levels of granulysin, RANTES (CCL5), perforin, CXCL9, substance P, chromogranin B, and dermcidin were not regulated in untreated acne patients and isotretinoin had no effect on these AMPs. In conclusion, the expression of various AMPs is altered in acne vulgaris. Isotretinoin therapy normalizes the cutaneous production of distinct AMPs while the expression of others is still increased in healing acne. Considering the antimicrobial and pro-inflammatory role of AMPs, these molecules could serve as specific targets for acne therapy and maintenance of clinical remission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others



Confidence interval


Antimicrobial peptide


Human β-defensin


Porphobilinogen deaminase






  1. Aarbiou J, Tjabringa GS, Verhoosel RM, Ninaber DK, White SR, Peltenburg LT, Rabe KF, Hiemstra PS (2006) Mechanisms of cell death induced by the neutrophil antimicrobial peptides alpha-defensins and LL-37. Inflamm Res 55:119–127

    Article  PubMed  CAS  Google Scholar 

  2. Adişen E, Yüksek J, Erdem O, Aksakal FN, Aksakal AB (2010) Expression of human neutrophil proteins in acne vulgaris. J Eur Acad Dermatol Venereol 24:32–37

    Article  PubMed  Google Scholar 

  3. Bechara FG, Sand M, Skrygan M, Kreuter A, Altmeyer P, Gambichler T (2012) Acne inversa: evaluating antimicrobial peptides and proteins. Ann Dermatol 24:393–397

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Büchau AS, Hassan M, Kukova G, Lewerenz V, Kellermann S, Würthner JU, Wolf R, Walz M, Gallo RL, Ruzicka T (2007) S100A15, an antimicrobial protein of the skin: regulation by E. coli through Toll-like receptor 4. J Invest Dermatol 127:2596–2604

    Article  PubMed  Google Scholar 

  5. Chiu A, Chon SY, Kimball AB (2003) The response of skin disease to stress: changes in the severity of acne vulgaris as affected by examination stress. Arch Dermatol 139:897–900

    Article  PubMed  Google Scholar 

  6. Chronnell CM, Ghali LR, Ali RS, Quinn AG, Holland DB, Bull JJ, Cunliffe WJ, McKay IA, Philpott MP, Müller-Röver S (2001) Human beta defensin-1 and -2 expression in human pilosebaceous units: upregulation in acne vulgaris lesions. J Invest Dermatol 117:1120–1125

    Article  PubMed  CAS  Google Scholar 

  7. Doshi A, Zaheer A, Stiller MJ (1997) A comparison of current acne grading systems and proposal of a novel system. Int J Dermatol 36:416–418

    Article  PubMed  CAS  Google Scholar 

  8. Ganceviciene R, Böhm M, Fimmel S, Zouboulis CC (2009) The role of neuropeptides in the multifactorial pathogenesis of acne vulgaris. Dermatoendocrinology 1:170–176

    Article  CAS  Google Scholar 

  9. Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF, Lehrer RI (1985) Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 76:1427–1435

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Gläser R, Harder J, Lange H, Bartels J, Christophers E, Schröder JM (2005) Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat Immunol 6:57–64

    Article  PubMed  Google Scholar 

  11. Greenman J, Holland KT, Cunliffe WJ (1983) Effects of pH on biomass, maximum specific growth rate and extracellular enzyme production by three species of cutaneous propionibacteria grown in continuous culture. J Gen Microbiol 129:1301–1307

    PubMed  CAS  Google Scholar 

  12. Harder J, Dressel S, Wittersheim M, Cordes J, Meyer-Hoffert U, Mrowietz U, Fölster-Holst R, Proksch E, Schröder JM, Schwarz T, Gläser R (2010) Enhanced expression and secretion of antimicrobial peptides in atopic dermatitis and after superficial skin injury. J Invest Dermatol 130:1355–1364

    Article  PubMed  CAS  Google Scholar 

  13. Harder J, Schröder JM (2002) RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem 277:46779–46784

    Article  PubMed  CAS  Google Scholar 

  14. Harder J, Tsuruta D, Murakami M, Kurokawa I (2013) What is the role of antimicrobial peptides (AMP) in acne vulgaris? Exp Dermatol 22:386–391

    Article  PubMed  CAS  Google Scholar 

  15. Hayworth JL, Kasper KJ, Leon-Ponte M, Herfst CA, Yue D, Brintnell WC, Mazzuca DM, Heinrichs DE, Cairns E, Madrenas J, Hoskin DW, McCormick JK, Haeryfar SM (2009) Attenuation of massive cytokine response to the staphylococcal enterotoxin B superantigen by the innate immunomodulatory protein lactoferrin. Clin Exp Immunol 157:60–70

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Hegyi Z, Zwicker S, Bureik D, Peric M, Koglin S, Batycka-Baran A, Prinz JC, Ruzicka T, Schauber J, Wolf R (2012) Vitamin D analog calcipotriol suppresses the Th17 cytokine-induced proinflammatory S100 “alarmins” psoriasin (S100A7) and koebnerisin (S100A15) in psoriasis. J Invest Dermatol 132:1416–1424

    Article  PubMed  CAS  Google Scholar 

  17. Kim J, Ko Y, Park YK, Kim NI, Ha WK, Cho Y (2010) Dietary effect of lactoferrin-enriched fermented milk on skin surface lipid and clinical improvement of acne vulgaris. Nutrition 26:902–909

    Article  PubMed  CAS  Google Scholar 

  18. Krensky AM, Clayberger C (2009) Biology and clinical relevance of granulysin. Tissue Antigens 73:193–198

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Kurokawa I, Danby FW, Ju Q, Wang X, Xiang LF, Xia L, Chen W, Nagy I, Picardo M, Suh DH, Ganceviciene R, Schagen S, Tsatsou F, Zouboulis CC (2009) New developments in our understanding of acne pathogenesis and treatment. Exp Dermatol 18:821–832

    Article  PubMed  CAS  Google Scholar 

  20. Lee DY, Yamasaki K, Rudsil J, Zouboulis CC, Park GT, Yang JM, Gallo RL (2008) Sebocytes express functional cathelicidin antimicrobial peptides and can act to kill Propionibacterium acnes. J Invest Dermatol 128:1863–1866

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Lee SE, Kim JM, Jeong SK, Jeon JE, Yoon HJ, Jeong MK, Lee SH (2010) Protease-activated receptor-2 mediates the expression of inflammatory cytokines, antimicrobial peptides, and matrix metalloproteinases in keratinocytes in response to Propionibacterium acnes. Arch Dermatol Res 302:745–756

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  23. McInturff JE, Wang SJ, Machleidt T, Lin TR, Oren A, Hertz CJ, Krutzik SR, Hart S, Zeh K, Anderson DH, Gallo RL, Modlin RL, Kim J (2005) Granulysin-derived peptides demonstrate antimicrobial and anti-inflammatory effects against Propionibacterium acnes. J Invest Dermatol 125:256–263

    Article  PubMed  CAS  Google Scholar 

  24. Mueller EA, Trapp S, Frentzel A, Kirch W, Brantl V (2011) Efficacy and tolerability of oral lactoferrin supplementation in mild to moderate acne vulgaris: an exploratory study. Curr Med Res Opin 27:793–797

    Article  PubMed  CAS  Google Scholar 

  25. Nagy I, Pivarcsi A, Kis K, Koreck A, Bodai L, McDowell A, Seltmann H, Patrick S, Zouboulis CC, Kemény L (2006) Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes Infect 8:2195–2205

    Article  PubMed  CAS  Google Scholar 

  26. Nagy I, Pivarcsi A, Koreck A, Széll M, Urbán E, Kemény L (2005) Distinct strains of Propionibacterium acnes induce selective human beta-defensin-2 and interleukin-8 expression in human keratinocytes through toll-like receptors. J Invest Dermatol 124:931–938

    Article  PubMed  CAS  Google Scholar 

  27. Nakatsuji T, Gallo RL (2012) Antimicrobial peptides: old molecules with new ideas. J Invest Dermatol 132:887–895

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Nakatsuji T, Kao MC, Zhang L, Zouboulis CC, Gallo RL, Huang CM (2010) Sebum free fatty acids enhance the innate immune defense of human sebocytes by upregulating beta-defensin-2 expression. J Invest Dermatol 130:985–994

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Nell MJ, Tjabringa GS, Wafelman AR, Verrijk R, Hiemstra PS, Drijfhout JW, Grote JJ (2006) Development of novel LL-37 derived antimicrobial peptides with LPS and LTA neutralizing and antimicrobial activities for therapeutic application. Peptides 27:649–660

    Article  PubMed  CAS  Google Scholar 

  30. Niyonsaba F, Ogawa H, Nagaoka I (2004) Human beta-defensin-2 functions as a chemotactic agent for tumour necrosis factor-alpha-treated human neutrophils. Immunology 111:273–281

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Niyonsaba F, Ushio H, Nakano N, Ng W, Sayama K, Hashimoto K, Nagaoka I, Okumura K, Ogawa H (2007) Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol 127:594–604

    Article  PubMed  CAS  Google Scholar 

  32. Peric M, Koglin S, Kim SM, Morizane S, Besch R, Prinz JC, Ruzicka T, Gallo RL, Schauber J (2008) IL-17A enhances vitamin D3-induced expression of cathelicidin antimicrobial peptide in human keratinocytes. J Immunol 181:8504–8512

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Rieg S, Garbe C, Sauer B, Kalbacher H, Schittek B (2004) Dermcidin is constitutively produced by eccrine sweat glands and is not induced in epidermal cells under inflammatory skin conditions. Br J Dermatol 151:534–539

    Article  PubMed  CAS  Google Scholar 

  34. Sathish D, Shayeda Rao YM (2011) Acne and its treatment options: a review. Curr Drug Deliv 8:634–639

    Article  PubMed  CAS  Google Scholar 

  35. Schauber J, Gallo RL (2008) Antimicrobial peptides and the skin immune defense system. J Allergy Clin Immunol 122:261–266

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Schlapbach C, Yawalkar N, Hunger RE (2009) Human beta-defensin-2 and psoriasin are overexpressed in lesions of acne inversa. J Am Acad Dermatol 61:58–65

    Article  PubMed  CAS  Google Scholar 

  37. Scudiero O, Galdiero S, Cantisani M, Di Noto R, Vitiello M, Galdiero M, Naclerio G, Cassiman JJ, Pedone C, Castaldo G, Salvatore F (2010) Novel synthetic, salt-resistant analogs of human beta-defensins 1 and 3 endowed with enhanced antimicrobial activity. Antimicrob Agents Chemother 54:2312–2322

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Trivedi NR, Gilliland KL, Zhao W, Liu W, Thiboutot DM (2006) Gene array expression profiling in acne lesions reveals marked upregulation of genes involved in inflammation and matrix remodeling. J Invest Dermatol 126:1071–1079

    Article  PubMed  CAS  Google Scholar 

  39. Tutakne MA, Chari KVR (2003) Acne, rosacea and perioral dermatitis. In: Valia RG, Valia AR (eds) IADVL textbook and atlas of dermatology, 2nd edn. Bhalani Publishing House, Mumbai, pp 689–710

    Google Scholar 

  40. Wang Y, Zhang Z, Chen L, Guang H, Li Z, Yang H, Li J, You D, Yu H, Lai R (2011) Cathelicidin-BF, a snake cathelicidin-derived antimicrobial peptide, could be an excellent therapeutic agent for acne vulgaris. PLoS ONE 6:e22120

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Webster GF, Leyden JJ, Musson RA, Douglas SD (1985) Susceptibility of Propionibacterium acnes to killing and degradation by human neutrophils and monocytes in vitro. Infect Immun 49:116–121

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Wiesner J, Vilcinskas A (2010) Antimicrobial peptides: the ancient arm of the human immune system. Virulence 1:440–464

    Article  PubMed  Google Scholar 

  43. Wolf R, Howard OM, Dong HF, Voscopoulos C, Boeshans K, Winston J, Divi R, Gunsior M, Goldsmith P, Ahvazi B, Chavakis T, Oppenheim JJ, Yuspa SH (2008) Chemotactic activity of S100A7 (Psoriasin) is mediated by the receptor for advanced glycation end products and potentiates inflammation with highly homologous but functionally distinct S100A15. J Immunol 181:1499–1506

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Wolf R, Lewerenz V, Büchau AS, Walz M, Ruzicka T (2007) Human S100A15 splice variants are differentially expressed in inflammatory skin diseases and regulated through Th1 cytokines and calcium. Exp Dermatol 16:685–691

    Article  PubMed  CAS  Google Scholar 

  45. Wolf R, Ruzicka T, Yuspa SH (2011) Novel S100A7 (psoriasin)/S100A15 (koebnerisin) subfamily: highly homologous but distinct in regulation and function. Amino Acids 41:789–796

    Article  PubMed  CAS  Google Scholar 

  46. Yamasaki K, Di Nardo A, Bardan A, Murakami M, Ohtake T, Coda A, Dorschner RA, Bonnart C, Descargues P, Hovnanian A, Morhenn VB, Gallo RL (2007) Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med 13:975–980

    Article  PubMed  CAS  Google Scholar 

  47. Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schröder JM, Wang JM, Howard OM, Oppenheim JJ (1999) Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286:525–528

    Article  PubMed  CAS  Google Scholar 

  48. Zouboulis CC, Böhm M (2004) Neuroendocrine regulation of sebocytes: a pathogenetic link between stress and acne. Exp Dermatol 13(Suppl 4):31–35

    Article  PubMed  CAS  Google Scholar 

Download references


We are indebted to Dr. Robert Besch (Dept. of Dermatology and Allergology, Ludwig Maximilian University, Munich, Germany) for providing us with some valuable reagents and equipment. The study was supported by the Wissenschaftliches Herausgeberkollegium der Münchener Medizinischen Wochenschrift e.V.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Miklós Sárdy.

Additional information

J. Schauber and M. Sárdy contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borovaya, A., Dombrowski, Y., Zwicker, S. et al. Isotretinoin therapy changes the expression of antimicrobial peptides in acne vulgaris. Arch Dermatol Res 306, 689–700 (2014).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: