Archives of Dermatological Research

, Volume 306, Issue 7, pp 645–652 | Cite as

Age-related NADH oxidase (arNOX)-catalyzed oxidative damage to skin proteins

  • Christiaan Meadows
  • D. James MorréEmail author
  • Dorothy M. Morré
  • Zoe D. Draelos
  • Dale Kern
Original Paper


Age-related NADH oxidase (arNOX), a cell surface-located hydroquinone oxidase capable of superoxide generation, appears at age 30 and increases with age thereafter. The ectodomain of arNOX is shed from the cell surface into body fluids including sera and saliva where its activity was measured spectrophotometrically using a reduction of ferricytochrome c as a measure of superoxide generation. The autofluorescence of advanced glycation end products correlates with epidermal arNOX activity as well. To demonstrate protein cross-linking, a fluorescence-labeled analog of tyrosine, tyramine, that would react with proteins carrying arNOX-generated tyrosyl radicals was used. The assay demonstrated the potential for arNOX-induced oxidative damage (dityrosine formation) to human collagen and elastin and to other surface proteins of intact human embryo fibroblasts and frozen sections from epidermal punch biopsies. The findings support a role for arNOX as a major source of oxidative damage leading to cross-linking of skin proteins.


Age-related ECTO-NADH oxidase Skin aging Advanced glycation end products Collagen Reactive oxygen  



We thank Debby Parisi, Michael Kim, and Brittany Kiefner for providing technical assistance and Carol Bain, Tracy Weigand, and Dr. Paul Snyder, Department of Pathology, Purdue University School of Veterinary Medicine, for assistance in the preparation and analysis of the frozen tissue sections and Peggy Runck for the preparation of the manuscript.


  1. 1.
    Aeschbach R, Amadoò R, Neukom H (1976) Formation of dityrosine cross-links in proteins by oxidation of tyrosine residues. Biochim Biophys Acta 439(2):292–301. doi: 10.1016/0005-2795(76)90064-7 PubMedCrossRefGoogle Scholar
  2. 2.
    Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272(33):20313–20316PubMedCrossRefGoogle Scholar
  3. 3.
    Butler J, Koppenol WH, Margoliash E (1982) Kinetics and mechanism of the reduction of ferricytochrome c by the superoxide anion. J Biol Chem 257(18):10747–10750PubMedGoogle Scholar
  4. 4.
    Hopman AH, Ramaekers FC, Speel EJ (1998) Rapid synthesis of biotin-, digoxigenin-, trinitrophenyl-, and fluorochrome-labeled tyramides and their application for in situ hybridization using CARD amplification. J Histochem Cytochem 46(16):771–777. doi: 10.1177/002215549804600611 PubMedCrossRefGoogle Scholar
  5. 5.
    Kang KA, Zhang R, Piao MJ, Ko DO, Wang ZH, Lee K et al (2008) Inhibitory effects of triphlorethol-A on MMP-1 induced by oxidative stress in human keratinocytes via ERK and AP-1 inhibition. J Toxicol Environ Health A 71(15):992–999. doi: 10.1080/01932690801934653 PubMedCrossRefGoogle Scholar
  6. 6.
    Kern DG, Draelos ZD, Meadows C, Morré DJ, Morré DM (2010) Controlling reactive oxygen species in skin at their source to reduce skin aging. Rejuven Res 13(2–3):165–167. doi: 10.1089/rej.2009.0914 CrossRefGoogle Scholar
  7. 7.
    Knaggs H (2009) The arNOX enzyme: implications for intrinsic aging. Cosmet Toilet 124:48–52Google Scholar
  8. 8.
    Kozina LS, Borzova IV, Arutiunov VA, Ryzhak GA (2013) Role of oxidative stress in skin aging. Adv Gerontol 3(1):18–22. doi: 10.134/S2079057013010086 CrossRefGoogle Scholar
  9. 9.
    Leeuwenburgh C, Wagner P, Holloszy JO, Sohal RS, Heinecke JW (1997) Caloric restriction attenuates dityrosine cross-linking of cardiac and skeletal muscle proteins in aging mice. Arch Biochem Biophys 346(1):74–80. doi: 10.1006/abbi.1997.0297 PubMedCrossRefGoogle Scholar
  10. 10.
    Linnane AW, Kios M, Vitetta L (2007) Healthy aging: regulation of the metabolome by cellular redox modulation and peroxidant signaling systems: the essential roles of superoxide anion and hydrogen peroxide. Biogerentology 8(5):445–467. doi: 10.1007/s10522-007-9096-4 CrossRefGoogle Scholar
  11. 11.
    MacMillan-Crow LA, Crow JP, Thompson JA (1998) Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry 37(6):1613–1622. doi: 10.1021/bi971894b PubMedCrossRefGoogle Scholar
  12. 12.
    Morré DM, Guo F, Morré DJ (2003) An aging-related cell surface NADH oxidase (arNOX) generates superoxide and is inhibited by coenzyme Q. Mol Cell Biochem 254(1–2):101–109. doi: 10.1023/A:1027301405614 PubMedCrossRefGoogle Scholar
  13. 13.
    Morré DM, Lenaz G, Morré DJ (2000) Surface oxidase and oxidative stress propagation in aging. J Exp Biol 203(10):1513–1521PubMedGoogle Scholar
  14. 14.
    Morré DJ, Morré DM (2003) Cell surface NADH oxidases (ECTO-NOX proteins) with roles in cancer, cellular time-keeping, growth, age and neurodegenerative diseases. Free Radic Res 37(8):795–808. doi: 10.1080/1071576031000083107 PubMedCrossRefGoogle Scholar
  15. 15.
    Morré DJ, Morré DM (2006) Aging related cell surface ECTO-NOX protein, arNOX, a preventive target to reduce atherogenic risk in the elderly. Rejuven Res 9(2):231–236. doi: 10.1089/rej.2006.9.231 CrossRefGoogle Scholar
  16. 16.
    Nohl H, Gille L, Staniek K (2005) Intracellular generation of reactive oxygen species by mitochondria. Biochem Pharmacol 69(5):719–723. doi: 10.1016/j.bcp.2004.12.002 PubMedCrossRefGoogle Scholar
  17. 17.
    Nohl H, Kozlov V, Staniek K, Gille L (2001) The multiple functions of coenzyme Q. Bioorg Chem 29(1):1–13. doi: 10.1006/bioo.2000.1193 PubMedCrossRefGoogle Scholar
  18. 18.
    Nole G, Johnson AW (2004) An analysis of cumulative lifetime solar ultraviolet radiation exposure and the benefits of daily sun protection. Dermatol Ther 17(1):57–62. doi: 10.1111/j.1396-0296.2004.04S1007.x PubMedCrossRefGoogle Scholar
  19. 19.
    Ogura Y, Kuwaharo T, Akiyama M, Tajima S, Hattori K, Okamoto K et al (2011) Dermal carbonyl modification is related to the yellowish color change in photo-aged Japanese facial skin. J Dermatol Sci 64(1):45–52. doi: 10.1016/j.jdermsci.2011.06.015 PubMedCrossRefGoogle Scholar
  20. 20.
    Rattan SI (2006) Theories of biological aging: genes, proteins, and free radicals. Free Radic Res 40(12):1230–1238. doi: 10.1080/10715760600911303 PubMedCrossRefGoogle Scholar
  21. 21.
    Rehmus WE, Kern D, Janjua R, Morré DM, Morré DJ (2008) Appearance of skin aging in healthy women. Correlation with arNOX levels: a potential new mechanism in ageing? Clin Dermatol Retin Other Treat 24:52–56Google Scholar
  22. 22.
    St. Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277(47):44784–44790. doi: 10.1074/jbc.M207217200 PubMedCrossRefGoogle Scholar
  23. 23.
    Sander CS, Chang H, Salzmann S, Müller C, Ekanayake-Mudiyanselage S, Elsner P, Thiele J (2002) Photoaging is associated with protein oxidation in human skin in vivo. J Invest Dermatol 118(4):618–625. doi: 10.1046/j.1523-1747.2002.01708.x PubMedCrossRefGoogle Scholar
  24. 24.
    Shi SR, Key ME, Kalra KL (1991) Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method of immunohistochemical staining based on microwave oven heating of tissue sections. J Histochem Cytochem 39(6):741–748. doi: 10.1177/39.6.1709656 PubMedCrossRefGoogle Scholar
  25. 25.
    Sorkin DL, Duong DK, Miller AF (1997) Mutation of tyrosine 34 to phenylalanine eliminates the active site pK of reduced iron-containing superoxide dismutase. Biochemistry 36(27):8202–8208. doi: 10.1021/bi970533t PubMedCrossRefGoogle Scholar
  26. 26.
    Squier TC (2001) Oxidative stress and protein degradation during biological aging. Exp Gerontol 36(9):1539–1550. doi: 10.1016/S0531-5565(01)00139-5 PubMedCrossRefGoogle Scholar
  27. 27.
    Tang X, Parisi D, Spicer B, Morré DM, Morré DJ (2013) Molecular cloning and characterization of human age-related NADH oxidase (arNOX) proteins as members of the TM-9 superfamily of transmembrane proteins. Adv Biol Chem 3(1):187–197. doi: 10.4236/abc.2013.32024 CrossRefGoogle Scholar
  28. 28.
    van der Vlies D, Wirtz KW, Pap EH (2001) Detection of protein oxidation in rat-1 fibroblasts by fluorescently labeled tyramine. Biochemistry 40(26):7783–7788. doi: 10.1021/bi002795s PubMedCrossRefGoogle Scholar
  29. 29.
    Wells-Knecht MC, Huggins TG, Dyer DG, Thorpe SR, Baynes JW (1993) Oxidized amino acids in lens protein with age. Measurement of o-tyrosine and dityrosine in the aging human lens. J Biol Chem 268(17):12348–12352PubMedGoogle Scholar
  30. 30.
    Xu S, Ying J, Jiang B, Guo W, Adachi T, Sharov V et al (2006) Detection of sequence-specific tyrosine nitration of manganese SOD and SERCA in cardiovascular disease and aging. Am J Physiol Heart Circ Physiol 290(6):H2220–H2227. doi: 10.1152/ajpheart.01293.2005 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Christiaan Meadows
    • 1
  • D. James Morré
    • 1
    Email author
  • Dorothy M. Morré
    • 1
  • Zoe D. Draelos
    • 2
  • Dale Kern
    • 3
  1. 1.MorNuCo, Inc.Purdue Research ParkWest LafayetteUSA
  2. 2.High PointUSA
  3. 3.NuSkin InternationalProvoUSA

Personalised recommendations