Skip to main content

Advertisement

Log in

Reevaluation of the non-lesional dry skin in atopic dermatitis by acute barrier disruption: an abnormal permeability barrier homeostasis with defective processing to generate ceramide

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Atopic dermatitis is characterized by disruption of the cutaneous barrier due to reduced ceramide levels even in non-lesional dry skin. Following further acute barrier disruption by repeated tape strippings, we re-characterized the non-lesional dry skin of subjects with atopic dermatitis, which shows significantly reduced levels of barrier function and ceramide but not of beta-glucocerebrosidase activity. For the first time, we report an abnormal trans-epidermal water loss homeostasis in which delayed recovery kinetics of trans-epidermal water loss occurred on the first day during the 4 days after acute barrier disruption compared with healthy control skin. Interestingly, whereas the higher ceramide level in the stratum corneum of healthy control skin was further significantly up-regulated at 4 days post-tape stripping, the lower ceramide level in the stratum corneum of subjects with atopic dermatitis was not significantly changed. In a parallel study, whereas beta-glucocerebrosidase activity at 4 days post-tape stripping was significantly up-regulated in healthy control skin compared with before tape stripping, the level of that activity remained substantially unchanged in atopic dermatitis. These findings indicate that subjects with atopic dermatitis have a defect in sphingolipid-metabolic processing that generates ceramide in the interface between the stratum corneum and the epidermis. The results also support the notion that the continued disruption of barrier function in atopic dermatitis non-lesional skin is associated with the impaired homeostasis of a ceramide-generating process, which underscores an atopy-specific inflammation-triggered ceramide deficiency that is distinct from other types of dermatitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AD:

Atopic dermatitis

HC:

Healthy control

SC:

Stratum corneum

TEWL:

Trans-epidermal water loss

BGCase:

β-Glucocerebrosidase

aSMase:

Acid sphingomyelinase

aCDase:

Acid ceramidase

LG:

Lamellar granule

References

  1. Angelova-Fischer I, Mannheimer AC, Hinder A, Ruether A, Franke A, Neubert RH, Fischer TW, Zillikens D (2011) Distinct barrier integrity phenotypes in filaggrin-related atopic eczema following sequential tape stripping and lipid profiling. Exp Dermatol 20:351–356

    Article  PubMed  Google Scholar 

  2. Arikawa J, Ishibashi M, Kawashima M, Takagi Y, Ichikawa Y, Imokawa G (2002) Decreased levels of sphingosine, a natural anti-microbial agent, may be associated with vulnerability of the stratum corneum from patients with atopic dermatitis to colonization by Staphylococcus aureus. J Invest Dermatol 119:433–439

    Article  CAS  PubMed  Google Scholar 

  3. Di Nardo A, Wertz P, Giannetti A, Seidenari S (1998) Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Derm Venereol 78:27–30

    Article  PubMed  Google Scholar 

  4. Fartasch M, Bassukas ID, Diepgen TL (1992) Disturbed extruding mechanism of lamellar bodies in dry non-eczematous skin of atopics. Br J Dermatol 127:221–227

    Article  CAS  PubMed  Google Scholar 

  5. Feingold KR, Man MQ, Proksch E, Menon GK, Brown BE, Elias PM (1991) The lovastatin-treated rodent: a new model of barrier disruption and epidermal hyperplasia. J Invest Dermatol 96:201–209

    Article  CAS  PubMed  Google Scholar 

  6. Hanifin JM, Rajka G (1980) Diagnostic features of atopic dermatitis. Acta Derm Venereol (Stockh) 92 (Suppl.):44–47

    Google Scholar 

  7. Hara J, Higuchi K, Okamoto R, Kawashima M, Imokawa G (2000) High-expression of sphingomyelin deacylase is an important determinant of ceramide deficiency leading to barrier disruption in atopic dermatitis. J Invest Dermatol 115:406–413

    Article  CAS  PubMed  Google Scholar 

  8. Hata M, Tokura Y, Takigawa M, Sato M, Shioya Y, Fujikura Y, Imokawa G (2002) Assessment of epidermal barrier function by photoacoustic spectrometry in relation to its importance in the pathogenesis of atopic dermatitis. Lab Invest 82:1451–1461

    Article  CAS  PubMed  Google Scholar 

  9. Higuchi K, Hara J, Okamoto R, Kawashima M, Imokawa G (2000) The skin of atopic dermatitis patients contains a novel enzyme, glucosylceramide sphingomyelin deacylase, which cleaves the N-acyl linkage of sphingomyelin and glucosylceramide. Biochem J 350:747–756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Holleran WM, Feingold KR, Man M-Q, Gao WN, Lee JM, Elias PM (1991) Regulation of epidermal sphingolipid synthesis by permeability barrier function. J Lipid Res 32:1151–1158

    CAS  PubMed  Google Scholar 

  11. Holleran WM, Man MQ, Gao WN, Menon GK, Elias PM, Feingold KR (1991) Sphingolipids are required for mammalian epidermal barrier function. Inhibition of sphingolipid synthesis delays barrier recovery after acute perturbation. J Clin Invest 88:1338–1345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Holleran WM, Takagi Y, Menon GK, Legler G, Feingold KR, Elias PM (1993) Processing of epidermal glucosylceramides is required for optimal mammalian cutaneous permeability barrier function. J Clin Invest 91:1656–1664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Holleran WM, Ginns EI, Menon GK, Grundmann JU, Fartasch M, McKinney CE, Elias PM, Sidransky E (1994) Consequences of beta-glucocerebrosidase deficiency in epidermis. Ultrastructure and permeability barrier alterations in Gaucher disease. J Clin Invest 93:1756–1764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Holleran WM, Takagi Y, Menon GK, Jackson SM, Lee JM, Feingold KR, Elias PM (1994) Permeability barrier requirements regulate epidermal beta-glucocerebrosidase. J Lipid Res 35:905–912

    CAS  PubMed  Google Scholar 

  15. Imokawa G, Abe A, Jin K, Higaki Y, Kawashima M, Hidano A (1991) Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin? J Invest Dermatol 96:523–526

    Article  CAS  PubMed  Google Scholar 

  16. Imokawa G, Kuno H, Kawai M (1991) Stratum corneum lipids serve as a bound-water modulator. J Invest Dermatol 96:845–851

    Article  CAS  PubMed  Google Scholar 

  17. Imokawa G, Yada Y, Higuchi K, Okuda M, Ohashi Y, Kawamata A (1994) Pseudo-acylceramide with linoleic acid produces selective recovery of diminished cutaneous barrier function in essential fatty acid deficient rats and has an inhibitory effect on epidermal hyperplasia. J Clin Invest 94:89–96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Imokawa G (1999) Skin moisturizers: development and clinical use ceramides. In: Loden M (ed) Dry skin and moisturizers. CRC Press, Boca Raton, pp 269–299

    Google Scholar 

  19. Imokawa G (2002) Ceramides as natural moisturizing factors and their efficacy in dry skin. In: Leyden JJ, Rawlings AV (eds) Skin moisturization. Marcel Dekker Inc., New York, pp 267–302

    Google Scholar 

  20. Imokawa G (2004) Surfactant-induced depletion of ceramides and other intercellular lipids: implication for the mechanism leading to dehydration of the stratum corneum. Exog Dermatol 3:81–98

    Article  CAS  Google Scholar 

  21. Ishibashi M, Arikawa J, Okamoto R, Kawashima M, Takagi Y, Oguchi K, Imokawa G (2003) The abnormal expression of the novel epidermal enzyme, glucosylceramide deacylase and the accumulation of its enzymatic reaction product, glucosylsphingosine in the skin of patients with atopic dermatitis. Lab Invest 88:397–408

    Article  Google Scholar 

  22. Ishikawa J, Narita H, Kondo N, Hotta M, Takagi Y, Masukawa Y, Kitahara T, Takema Y, Koyano S, Yamazaki S, Hatamochi A (2010) Changes in the ceramide profile of atopic dermatitis patients. J Invest Dermatol 130:2511–2514

    Article  CAS  PubMed  Google Scholar 

  23. Jensen JM, Fölster-Holst R, Baranowsky A, Schunck M, Winoto-Morbach S, Neumann C, Schütze S, Proksch E (2004) Impaired sphingomyelinase activity and epidermal differentiation in atopic dermatitis. J Invest Dermatol 122:1423–1431

    Article  CAS  PubMed  Google Scholar 

  24. Jin K, Higaki Y, Takagi Y, Higuchi K, Yada Y, Kawashima M, Imokawa G (1994) Analysis of beta-glucocerebrosidase and ceramidase activity in atopic and aged dry skin. Acta Derm Venereol 74:337–340

    CAS  PubMed  Google Scholar 

  25. Jungersted JM, Scheer H, Mempel M, Baurecht H, Cifuentes L, Høgh JK, Hellgren LI, Jemec GB, Agner T, Weidinger S (2010) Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema. Allergy 65:911–918

    Article  CAS  PubMed  Google Scholar 

  26. Kikuchi K, Kobayashi H, O’goshi K, Tagami H (2006) Impairment of skin barrier function is not inherent in atopic dermatitis patients: a prospective study conducted in newborns. Pediatr Dermatol 23:109–113

    Article  PubMed  Google Scholar 

  27. Kusuda S, Cui CY, Takahashi M, Tezuka T (1998) Localization of sphingomyelinase in lesional skin of atopic dermatitis patients. J Invest Dermatol 111:733–738

    Article  CAS  PubMed  Google Scholar 

  28. Mao-Qiang M, Feingold KR, Elias PM (1993) Inhibition of cholesterol and sphingolipid synthesis causes paradoxical effects on permeability barrier homeostasis. J Invest Dermatol 101:185–190

    Article  CAS  PubMed  Google Scholar 

  29. Masukawa Y, Narita H, Shimizu E, Kondo N, Sugai Y, Oba T, Homma R, Ishikawa J, Takagi Y, Kitahara T, Takema Y, Kita K (2008) Characterization of overall ceramide species in human stratum corneum. J Lipid Res 49:1466–1476

    Article  CAS  PubMed  Google Scholar 

  30. Masukawa Y, Narita H, Sato H, Naoe A, Kondo N, Sugai Y, Oba T, Homma R, Ishikawa J, Takagi Y, Kitahara T (2009) Comprehensive quantification of ceramide species in human stratum corneum. J Lipid Res 50:1708–1719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Matsuki H, Kiyokane K, Matsuki T, Sato S, Imokawa G (2004) Re-characterization of the non-lesional dry skin in atopic dermatitits through disrupted barrier function. Exog Dermatol 3:282–292

    Article  Google Scholar 

  32. Matsuki H, Kiyokane K, Matsuki T, Sato S, Imokawa G (2004) Re-evaluation of the importance of barrier dysfunction in the non-lesional dry skin of atopic dermatitis through the use of two barrier creams. Exog Dermatol 3:293–302

    Article  CAS  Google Scholar 

  33. Motta S, Monti M, Sesana S, Caputo R, Carelli S, Ghidoni R (1993) Ceramide composition of the psoriatic scale. Biochim Biophys Acta 1182:147–151

    Article  CAS  PubMed  Google Scholar 

  34. Murata Y, Ogata J, Higaki Y, Kawashima M, Yada Y, Higuchi K, Tsuchiya T, Kawaminami S, Imokawa G (1996) Abnormal expression of sphingomyelin acylase in atopic dermatitis: an etiologic factor for ceramide deficiency? J Invest Dermatol 106:1242–1249

    Article  CAS  PubMed  Google Scholar 

  35. Nogami-Itoh M, Teranishi Y, Kuwahara H, Kusumoto M, Nakamura K, Matsumoto M, Sakai J, Kimura T, Kawashima M (2010) Purification and identification of sphingomyelin deacylase from rat skin. J Invest Dermatol 13 (Suppl.2):s24

    Google Scholar 

  36. Okamoto R, Arikawa J, Ishibashi M, Kawashima M, Takagi Y, Imokawa G (2003) Sphingosylphosphorylcholine levels are significantly increased in the stratum corneum of patients with atopic dermatitis: physiological and functional relevance of sphingomyelin deacylase to the ceramide deficiency. J Lipid Res 44:93–102

    Article  CAS  PubMed  Google Scholar 

  37. Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, Goudie DR, Sandilands A, Campbell LE, Smith FJ, O’Regan GM, Watson RM, Cecil JE, Bale SJ, Compton JG, DiGiovanna JJ, Fleckman P, Lewis-Jones S, Arseculeratne G, Sergeant A, Munro CS, El Houate B, McElreavey K, Halkjaer LB, Bisgaard H, Mukhopadhyay S, McLean WH (2006) Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 38:441–446

    Article  CAS  PubMed  Google Scholar 

  38. Sandilands A, O’Regan GM, Liao H, Zhao Y, Terron-Kwiatkowski A, Watson RM, Cassidy AJ, Goudie DR, Smith FJ, McLean WH, Irvine AD (2006) Prevalent and rare mutations in the gene encoding filaggrin cause ichthyosis vulgaris and predispose individuals to atopic dermatitis. J Invest Dermatol 126:1770–1775

    Article  CAS  PubMed  Google Scholar 

  39. Sandilands A, Smith FJ, Irvine AD, McLean WH (2007) Filaggrin’s fuller figure: a glimpse into the genetic architecture of atopic dermatitis. J Invest Dermatol 127:1282–1284

    Article  CAS  PubMed  Google Scholar 

  40. Schmuth M, Man MQ, Weber F, Gao W, Feingold KR, Fritsch P, Elias PM, Holleran WM (2000) Permeability barrier disorder in Niemann–Pick disease: sphingomyelin–ceramide processing required for normal barrier homeostasis. J Invest Dermatol 115:459–466

    Article  CAS  PubMed  Google Scholar 

  41. Smith FJ, Irvine AD, Terron-Kwiatkowski A, Sandilands A, Campbell LE, Zhao Y, Liao H, Evans AT, Goudie DR, Lewis-Jones S, Arseculeratne G, Munro CS, Sergeant A, O’Regan G, Bale SJ, Compton JG, DiGiovanna JJ, Presland RB, Fleckman P, McLean WH (2006) Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet 38:337–342

    Article  CAS  PubMed  Google Scholar 

  42. Takagi Y, Nakagawa H, Higuchi K, Imokawa G (2005) Characterization of surfactant-induced skin damage through barrier recovery induced by pseudoacylceramide. Dermatology 211:128–134

    Article  CAS  PubMed  Google Scholar 

  43. Takagi Y, Kriehuber E, Imokawa G, Elias PM, Holleran WM (1999) Beta-glucocerebrosidase activity in mammalian stratum corneum. J Lipid Res 40:861–869

    CAS  PubMed  Google Scholar 

  44. Tanaka M, Zhen YX, Tagami H (1997) Normal recovery of the stratum corneum barrier function following damage induced by tape stripping in patients with atopic dermatitis. Br J Dermatol 136:966–967

    Article  CAS  PubMed  Google Scholar 

  45. Yoshida N, Sawada E, Imokawa G (2012) A reconstructed human epidermal keratinization culture model to characterize ceramide metabolism in the stratum corneum. Arch Dermatol Res 304:563–577

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms Chiharu Honma, Yukari Takeno and Mari Kawauchi for their excellent technical assistance.

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genji Imokawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugiura, A., Nomura, T., Mizuno, A. et al. Reevaluation of the non-lesional dry skin in atopic dermatitis by acute barrier disruption: an abnormal permeability barrier homeostasis with defective processing to generate ceramide. Arch Dermatol Res 306, 427–440 (2014). https://doi.org/10.1007/s00403-013-1430-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-013-1430-x

Keywords

Navigation