Archives of Dermatological Research

, Volume 306, Issue 1, pp 1–9 | Cite as

Optical coherence tomography (OCT) of collagen in normal skin and skin fibrosis

  • Olubukola Babalola
  • Andrew Mamalis
  • Hadar Lev-Tov
  • Jared JagdeoEmail author
Review Article


Optical coherence tomography (OCT) is a non-invasive imaging modality that is transforming clinical diagnosis in dermatology and other medical fields. OCT provides a cross-sectional evaluation of the epidermis and dermis and allows in vivo imaging of skin collagen. Upregulated collagen content is a key feature of fibrotic skin diseases. These diseases are often managed by the practitioner’s subjective assessment of disease severity and response to therapies. The purpose of this review is to provide an overview of the principles of OCT and present available evidence on the ability of OCT to image skin collagen in vivo for the diagnosis and management of diseases characterized by skin fibrosis. We review OCT studies that characterize the collagen content in normal skin and fibrotic skin diseases including systemic sclerosis and hypertrophic scars secondary to burn, trauma, and other injury. We also highlight several limitations of OCT and suggest enhancements to improve OCT imaging of skin fibrosis. We conclude that OCT imaging has the potential to serve as an objective, non-invasive measure of collagen’s status and disease progression for use in both research trials and clinical practice. The future use of OCT imaging as a quantitative imaging biomarker of fibrosis will help identify fibrosis and facilitate clinical examination in monitoring response to treatment longitudinally without relying on serial biopsies. The use of OCT technology for quantification of fibrosis is in the formative stages and we foresee tremendous growth potential, similar to the ultrasound development paradigm that evolved over the past 30 years.


Skin imaging Optical coherence tomography (OCT) Collagen Skin fibrosis 



Computed tomography


Frequency domain


Magnetic resonance imaging


Modified Rodnan skin score


Optical coherence tomography


Polarization-sensitive optical coherence tomography


Swept-source optical coherence tomography


Time domain





The project described was supported by the National Center for Advancing Translational Sciences, National Institutes of Health, through grant number UL1 TR000002 and linked award TL1 TR000133. The project described was supported by the National Center for Advancing Translational Sciences, National Institutes of Health, through grant number UL1 TR000002 and linked award KL2 TR000134. Research reported in this publication was supported by the National Institute Of Allergy And Infectious Diseases of the National Institutes of Health under Award Number R33AI080604. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Abignano G, Aydin SZ, Castillo-Gallego C, Liakouli V, Woods D, Meekings A, Wakefield RJ, McGonagle DG, Emery P, Del Galdo F (2013) Virtual skin biopsy by optical coherence tomography: the first quantitative imaging biomarker for scleroderma. Ann Rheum Dis. doi: 10.1136/annrheumdis-2012-202682 Google Scholar
  2. 2.
    Boone M, Norrenberg S, Jemec G, Del Marmol V (2013) High-definition optical coherence tomography: adapted algorithmic method for pattern analysis of inflammatory skin diseases: a pilot study. Arch Dermatol Res 305(4):283–297. doi: 10.1007/s00403-012-1311-8 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Boone MA, Norrenberg S, Jemec GB, Del Marmol V (2013) High-definition optical coherence tomography imaging of melanocytic lesions: a pilot study. Arch Dermatol Res. doi: 10.1007/s00403-013-1387-9 PubMedCentralGoogle Scholar
  4. 4.
    Cahill RA, Mortensen NJ (2010) Intraoperative augmented reality for laparoscopic colorectal surgery by intraoperative near-infrared fluorescence imaging and optical coherence tomography. Minerva Chir 65(4):451–462PubMedGoogle Scholar
  5. 5.
    Chu CR, Izzo NJ, Irrgang JJ, Ferretti M, Studer RK (2007) Clinical diagnosis of potentially treatable early articular cartilage degeneration using optical coherence tomography. J Biomed Optics 12(5):051703. doi: 10.1117/1.2789674 CrossRefGoogle Scholar
  6. 6.
    Crisan M, Crisan D, Sannino G, Lupsor M, Badea R, Amzica F (2013) Ultrasonographic staging of cutaneous malignant tumors: an ultrasonographic depth index. Arch Dermatol Res 305(4):305–313. doi: 10.1007/s00403-013-1321-1 PubMedCrossRefGoogle Scholar
  7. 7.
    Dalimier E, Salomon D (2012) Full-field optical coherence tomography: a new technology for 3D high-resolution skin imaging. Dermatology 224(1):84–92. doi: 10.1159/000337423 PubMedCrossRefGoogle Scholar
  8. 8.
    Fujimoto JG (2003) Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol 21(11):1361–1367. doi: 10.1038/nbt892 PubMedCrossRefGoogle Scholar
  9. 9.
    Gabrielli A, Avvedimento EV, Krieg T (2009) Scleroderma. N Engl J Med 360(19):1989–2003. doi: 10.1056/NEJMra0806188 PubMedCrossRefGoogle Scholar
  10. 10.
    Gambichler T, Jaedicke V, Terras S (2011) Optical coherence tomography in dermatology: technical and clinical aspects. Arch Dermatol Res 303(7):457–473. doi: 10.1007/s00403-011-1152-x PubMedCrossRefGoogle Scholar
  11. 11.
    Gladkova ND, Petrova GA, Nikulin NK, Radenska-Lopovok SG, Snopova LB, Chumakov YP, Nasonova VA, Gelikonov VM, Gelikonov GV, Kuranov RV, Sergeev AM, Feldchtein FI (2000) In vivo optical coherence tomography imaging of human skin: norm and pathology. Skin Res Technol Off J Int Soc Bioeng Skin 6(1):6–16CrossRefGoogle Scholar
  12. 12.
    Han JH, Kang JU, Song CG (2011) Polarization sensitive subcutaneous and muscular imaging based on common path optical coherence tomography using near infrared source. J Med Syst 35(4):521–526. doi: 10.1007/s10916-009-9388-0 PubMedCrossRefGoogle Scholar
  13. 13.
    Jimenez SA, Derk CT (2004) Following the molecular pathways toward an understanding of the pathogenesis of systemic sclerosis. Ann Intern Med 140(1):37–50PubMedCrossRefGoogle Scholar
  14. 14.
    Krieg T, Aumailley M, Koch M, Chu M, Uitto J (2012) Collagens, elastic fibers, and other extracellular matrix proteins of the dermis. Fitzpatrick’s dermatology in general medicine, 8th edition. McGraw-Hill, New YorkGoogle Scholar
  15. 15.
    Kunzi-Rapp K, Dierickx CC, Cambier B, Drosner M (2006) Minimally invasive skin rejuvenation with Erbium: YAG laser used in thermal mode. Lasers Surg Med 38(10):899–907. doi: 10.1002/lsm.20380 PubMedCrossRefGoogle Scholar
  16. 16.
    Lamirel C, Newman N, Biousse V (2009) The use of optical coherence tomography in neurology. Rev Neurol Dis 6(4):E105–E120PubMedGoogle Scholar
  17. 17.
    Liew YM, McLaughlin RA, Gong P, Wood FM, Sampson DD (2013) In vivo assessment of human burn scars through automated quantification of vascularity using optical coherence tomography. J Biomed Optics 18(6):061213. doi: 10.1117/1.JBO.18.6.061213 CrossRefGoogle Scholar
  18. 18.
    Liu B, Vercollone C, Brezinski ME (2012) Towards improved collagen assessment: polarization-sensitive optical coherence tomography with tailored reference arm polarization. Int J Biomed Imaging 2012:892680. doi: 10.1155/2012/892680 PubMedCentralPubMedGoogle Scholar
  19. 19.
    Matcher SJ (2011) Practical aspects of OCT imaging in tissue engineering. Methods Mol Biol 695:261–280. doi: 10.1007/978-1-60761-984-0_17 PubMedCrossRefGoogle Scholar
  20. 20.
    Mogensen M, Morsy HA, Thrane L, Jemec GB (2008) Morphology and epidermal thickness of normal skin imaged by optical coherence tomography. Dermatology 217(1):14–20. doi: 10.1159/000118508 PubMedCrossRefGoogle Scholar
  21. 21.
    Mogensen M, Thrane L, Joergensen TM, Andersen PE, Jemec GB (2009) Optical coherence tomography for imaging of skin and skin diseases. Semin Cutan Med Surg 28(3):196–202. doi: 10.1016/j.sder.2009.07.002 PubMedCrossRefGoogle Scholar
  22. 22.
    Oliveira GV, Chinkes D, Mitchell C, Oliveras G, Hawkins HK, Herndon DN et al (2005) Objective assessment of burn scar vascularity, erythema, pliability, thickness, and planimetry. Dermatol Surg Off Publ Am Soc Dermatol Surg 31(1):48–58Google Scholar
  23. 23.
    Pan Y, Farkas DL (1998) Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions. J Biomed Optics 3(4):446–455. doi: 10.1117/1.429897 CrossRefGoogle Scholar
  24. 24.
    Phillips KG, Wang Y, Levitz D, Choudhury N, Swanzey E, Lagowski J, Kulesz-Martin M, Jacques SL (2011) Dermal reflectivity determined by optical coherence tomography is an indicator of epidermal hyperplasia and dermal edema within inflamed skin. J Biomed Optics 16(4):040503. doi: 10.1117/1.3567082 CrossRefGoogle Scholar
  25. 25.
    Pierce MC, Sheridan RL, Hyle Park B, Cense B, de Boer JF (2004) Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography. Burns J Int Soc Burn Inj 30(6):511–517. doi: 10.1016/j.burns.2004.02.004 CrossRefGoogle Scholar
  26. 26.
    Pierce MC, Strasswimmer J, Hyle Park B, Cense B, De Boer JF (2004) Birefringence measurements in human skin using polarization-sensitive optical coherence tomography. J Biomed Optics 9(2):287–291. doi: 10.1117/1.1645797 CrossRefGoogle Scholar
  27. 27.
    Pierce MC, Strasswimmer J, Park BH, Cense B, de Boer JF (2004) Advances in optical coherence tomography imaging for dermatology. J Invest Dermatol 123(3):458–463. doi: 10.1111/j.0022-202X.2004.23404.x PubMedCrossRefGoogle Scholar
  28. 28.
    Pircher M, Goetzinger E, Leitgeb R, Hitzenberger C (2004) Three dimensional polarization sensitive OCT of human skin in vivo. Opt Express 12(14):3236–3244PubMedCrossRefGoogle Scholar
  29. 29.
    Sakai S, Yamanari M, Lim Y, Nakagawa N, Yasuno Y (2011) In vivo evaluation of human skin anisotropy by polarization-sensitive optical coherence tomography. Biomed Optics Express 2(9):2623–2631. doi: 10.1364/BOE.2.002623 CrossRefGoogle Scholar
  30. 30.
    Sattler E, Kastle R, Welzel J (2013) Optical coherence tomography in dermatology. J Biomed Optics 18(6):061224. doi: 10.1117/1.JBO.18.6.061224 CrossRefGoogle Scholar
  31. 31.
    Tadrous PJ (2000) Methods for imaging the structure and function of living tissues and cells: 3. Confocal microscopy and micro-radiology. J Pathol 191(4):345–354. doi: 10.1002/1096-9896(200008)191:4<345:AID-PATH696>3.0.CO;2-R PubMedCrossRefGoogle Scholar
  32. 32.
    Tearney GJ, Brezinski ME, Bouma BE, Boppart SA, Pitris C, Southern JF, Fujimoto JG (1997) In vivo endoscopic optical biopsy with optical coherence tomography. Science 276(5321):2037–2039PubMedCrossRefGoogle Scholar
  33. 33.
    Unterhuber A, Povazay B, Bizheva K, Hermann B, Sattmann H, Stingl A, Le T, Seefeld M, Menzel R, Preusser M, Budka H, Schubert C, Reitsamer H, Ahnelt PK, Morgan JE, Cowey A, Drexler W (2004) Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography. Phys Med Biol 49(7):1235–1246PubMedCrossRefGoogle Scholar
  34. 34.
    Varga J, Abraham D (2007) Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Investig 117(3):557–567. doi: 10.1172/JCI31139 PubMedCrossRefGoogle Scholar
  35. 35.
    Welzel J (2001) Optical coherence tomography in dermatology: a review. Skin Res Technol Off J Int Soc Bioeng Skin 7(1):1–9CrossRefGoogle Scholar
  36. 36.
    Welzel J, Lankenau E, Birngruber R, Engelhardt R (1997) Optical coherence tomography of the human skin. J Am Acad Dermatol 37(6):958–963PubMedCrossRefGoogle Scholar
  37. 37.
    Wessels R, De Bruin DM, Faber DJ, Van Leeuwen TG, Van Beurden M, Ruers TJ (2013) Optical biopsy of epithelial cancers by optical coherence tomography (OCT). Lasers Med Sci. doi: 10.1007/s10103-013-1291-8 PubMedGoogle Scholar
  38. 38.
    Yasuno Y, Makita S, Sutoh Y, Itoh M, Yatagai T (2002) Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography. Opt Lett 27(20):1803–1805PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Olubukola Babalola
    • 1
    • 2
  • Andrew Mamalis
    • 1
    • 2
  • Hadar Lev-Tov
    • 1
    • 2
    • 4
  • Jared Jagdeo
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of DermatologyUniversity of California at DavisSacramentoUSA
  2. 2.Dermatology ServiceSacramento VA Medical CenterMatherUSA
  3. 3.Department of DermatologyState University of New York Downstate Medical CenterBrooklynUSA
  4. 4.Department of DermatologyAlbert Einstein School of MedicineBronxUSA

Personalised recommendations