Advertisement

Archives of Dermatological Research

, Volume 306, Issue 2, pp 163–171 | Cite as

Expression of Foxp3, TGF-β and IL-10 in American cutaneous leishmaniasis lesions

  • F. M. D. Rodrigues
  • G. T. Coelho Neto
  • J. G. P. B. Menezes
  • M. E. A. Gama
  • E. G. Gonçalves
  • A. R. Silva
  • M. D. Laurenti
  • C. E. P. Corbett
  • F. T. Silveira
  • C. M. C. GomesEmail author
Original Paper

Abstract

Regulatory T cells (Tregs) are a unique population of CD25+CD4+ T cells that regulate innate and adaptive immune responses and have the ability to control the excessive or misdirected effects of the immune system. This modulation involves different mechanisms, such as the suppression of T cell proliferation and cytokine production, the secretion of suppressive cytokines (IL-10 and TGF-β) and the induction of effector T cell apoptosis in humans with infectious diseases such as Leishmania infections. The aim of this study was to evaluate the expression of Foxp3, IL-10 and TGF-β through immunohistochemistry in 22 skin biopsies of patients with localized cutaneous leishmaniasis (LCL) caused by Leishmania (Viannia) spp. from an endemic area in pre-Amazonian area of Maranhão State, Brazil. The density of these markers was also analyzed according to the species of parasite and the progression of the disease. The cellular density was 234 cells/mm² for Foxp3+ cells, 357 cells/mm² for TGF-β+ cells and 648 cells/mm² for IL-10+ cells in the studied skin lesions. The analysis of the cellular density of these immunological markers in relation to the species of Leishmania demonstrated that lesions caused by L. (V.) braziliensis had a lower density of Foxp3+ cells than lesions caused by L. (Viannia) spp. The expression of IL-10 was also lower in lesions caused by L. (V.) braziliensis. There were no significant differences in TGF-β expression between the two groups. The evaluation of these markers according to the progression of the disease did not reveal any significant differences. These findings suggest that Treg Foxp3+ cells, IL-10, and TGF-β play important roles in the immunopathogenesis of LCL and that these roles differ depending on the causal Leishmania species.

Keywords

Foxp3 TGF-β IL-10 American cutaneous leishmaniasis Leishmania (Viannia) sp. Immunohistochemistry 

Notes

Acknowledgments

The authors greatly acknowledge Felipe Passero for helpful discussions and Maria Cristina Medeiros and Angela dos Santos for excellent technical assistance. This research was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (Proc.06/56319-1), Laboratório de Patologia de Moléstias Infecciosas (LIM-50/HCFMUSP) and CAPES (Proc.048508).

Conflict of interest

The authors have no conflicts of interest concerning the work reported in this paper.

References

  1. 1.
    Alexander J, Bryson K (2005) T helper (h) 1/Th2 and Leishmania: paradox rather than paradigm. Immunol Lett 99(1):17–23PubMedCrossRefGoogle Scholar
  2. 2.
    Araujo FF, Vitelli-Avelar DM, Teixeira-Carvalho A et al (2011) Regulatory T cells phenotype in different clinical forms of chagas disease. PLoS Negl Trop Dis 5(5):e992PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Aseffa A, Gumy A, Launois P et al (2002) The early IL-4 response to Leishmania major and the resulting Th2 cell maturation steering progressive disease in BALB/c mice are subject to the control of regulatory CD4+CD25+ T cells. J Immunol 169:3232PubMedGoogle Scholar
  4. 4.
    Belkaid Y, Hoffmann KF, Mendez S et al (2001) The role of interleukin (IL)-10 in the persistente of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J Exp Med 194(10):1497–1506PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Belkaid Y (2003) The role of CD4+CD25+ regulatory T cells in Leishmania infection. Expert Opin Biol Ther 3(6):875–885PubMedCrossRefGoogle Scholar
  6. 6.
    Belkaid Y, Blank RB, Suffia I (2006) Natural regulatory T cells and parasites: a common quest for host homeostasis. Immunol Rev 2006(212):287–300CrossRefGoogle Scholar
  7. 7.
    Bogdan C, Röllinghoff M (1997) The immune response to Leishmania: mechanisms of parasite control and evasion. Int J Parasitol 28(1):121–134CrossRefGoogle Scholar
  8. 8.
    Bourreau E, Ronet C, Darcissac E et al (2009) Intralesional regulatory T cell suppressive function during human acute and chronic cutaneous leishmaniasis due to Leishmania guyanensis. Infect Immun 77(4):1464–1474CrossRefGoogle Scholar
  9. 9.
    Bluestone JA, Abbas AK (2003) Natural versus adaptive regulatory T cells. Nat Rev Immunol 3:253–257PubMedCrossRefGoogle Scholar
  10. 10.
    BRASIL (2007) Manual de Vigilância da Leishmaniose Tegumentar Americana. In: Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância Epidemiológica, 2nd edn. Brasília, p 182Google Scholar
  11. 11.
    Campanelli AP, Roselino AM, Cavassani KA et al (2006) CD4+CD25+ T cells in skin lesions of patients with cutaneous leishmaniasis exhibit phenotypic and functional characteristics of natural regulatory T cells. J Infect Dis 193(9):1313–1322PubMedCrossRefGoogle Scholar
  12. 12.
    Campos MB, De Castro Gomes CM, de Souza AA et al (2008) In vitro infectivity of species of Leishmania (Viannia) responsible for American cutaneous leishmaniasis. Parasitol Res 103(4):771–776PubMedCrossRefGoogle Scholar
  13. 13.
    Carneiro FP, De Magalhão AV, De Jesus Almeida Abreu Couto M et al (2009) Foxp3 expression in lesions of the different clinical forms of American tegumentary leishmaniasis. Parasite Immunol 31(10):646–651PubMedCrossRefGoogle Scholar
  14. 14.
    Chen Z, Lina F, Gaoa Y, Lia Z et al (2010) Foxp3 and RorγT: transcriotional regulation of Treg and Th17. Int Immunopharmacol 11(5):536–542PubMedCrossRefGoogle Scholar
  15. 15.
    Cummings HE, Tuladhar R, Satoskar AR (2010) Cytokines and their STATs in cutaneous and visceral leishmaniasis. J Biomed Biotechnol. doi: 10.1155/2010/294389
  16. 16.
    Da-Cruz AM, Matta NE, Nogueira RS (2009) Leishmania (Viannia) guyanensis induces low immunologic responsiveness in leishmaniasis patients from an endemic area of the Brazilian Amazon Highland. Am J Trop Med Hyg 80:339–344PubMedGoogle Scholar
  17. 17.
    de Boer OJ, van der Loos CM, Teeling P, van der Wal AC et al (2007) Immunohistochemical analysis of regulatory T cell markers Foxp3 and GITR on CD4+CD25+ T cells in normal skin and inflammatory dermatoses. J Histochem Cytochem 55(9):891–898PubMedCrossRefGoogle Scholar
  18. 18.
    Díaz NL, Arveláez FA, Zerpa O, Tapia FJ (2006) Inducible nitric oxide synthase and cytokine pattern in lesions of patients with American cutaneous leishmaniasis. Clin Exp Dermatol 31(1):114–117PubMedCrossRefGoogle Scholar
  19. 19.
    Gantt KR, Schultz-Cherry S, Rodriguez N et al (2003) Activation of TGF-β beta by Leishmania chagasi: importance for parasite survival in macrophages. J. Immunol 170(5):2613–2620PubMedGoogle Scholar
  20. 20.
    Ji J, Masterson J, Sun J, Soong L (2005) CD4+CD25+ regulatory T cells restrain pathogenic responses during Leishmania amazonensis infection. J. Immunol 174(11):7147–7153PubMedCentralPubMedGoogle Scholar
  21. 21.
    Katara GK, Ansari NA, Verma S, Ramesh V, Salotra P (2011) Foxp3 and IL-10 expression correlates with parasite burden in lesional tissues of post kala azar demal leishmaniasis (PKDL) patients. PLoS Negl Trop Dis 5(5):e1171PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Kaye P, Scott P (2011) Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol 9:604–615PubMedCrossRefGoogle Scholar
  23. 23.
    Lages CL, Suffia I, Velilla PA et al (2008) Functional regulatory T cells accumulated in aged hosts and promote chronic infection disease reactivation. J Immunol 181(3):1835–1848PubMedCentralPubMedGoogle Scholar
  24. 24.
    Mendez S, Reckling SK, Piccirillo CA et al (2004) Role for CD4+CD25+ regulatory T cells in reactivation of persistent leishmaniasis and control of concomitant immunity. J Exp Med 200(2):201–210PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Moura TR, Novais FO, Oliveira F, Clarêncio JJ, Noronha A et al (2005) Toward a novel experimental model of infection to study American cutaneous leishmaniasis caused by Leishmania braziliensis. Infect Immun 73:5827–5834PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Nagase H, Jones KM, Anderson CF, Noben-Trauth N (2007) Despite increased CD4+Foxp3+ cells within the infection site, BALB/c IL-4 receptor-deficient mice reveal CD4+Foxp3-negative T cells as a source of IL-10 in Leishmania major susceptibility. J Immunol 179(4):2435–2444PubMedGoogle Scholar
  27. 27.
    Nylén S, Sacks D (2007) Interleukin-10 and the pathogenesis oh human visceral leishmaniasis. Trends Immunol 28(9):378–383PubMedCrossRefGoogle Scholar
  28. 28.
    Piccirillo CA, Shevach EM (2004) Naturally-occurring CD4+CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance. Semin Immunol 16(2):81–88PubMedCrossRefGoogle Scholar
  29. 29.
    Reed SG (1999) TGF-β in infections and infectious diseases. Microbes Infect 1(15):1313–1325PubMedCrossRefGoogle Scholar
  30. 30.
    Reis LC, Brito ME, Souza MA et al (2009) Cellular immune response profile in patients with American tegumentary leishmaniasis prior and post chemotherapy treatment. J Clin Anal 23(1):63–69CrossRefGoogle Scholar
  31. 31.
    Roberts MTM (2006) Current understandings on the immunology of leishmaniasis and recent developments in prevention and treatment. Br Medl Bull 75–76:115–130CrossRefGoogle Scholar
  32. 32.
    Rocha PN, Almeida RP, Bacellar O, de Jesus AR et al (1999) Down-regulation of th1 type of response in early human American cutaneous leishmaniasis. J Infect Dis 180:1731–1734PubMedCrossRefGoogle Scholar
  33. 33.
    Rodrigues OR, Marques C, Soares-Clemente M, Ferronha MH, Santos-Gomes GM (2009) Identification of regulatory T cells during experimental Leishmania infantum infection. Immunobiology 214:101–111PubMedCrossRefGoogle Scholar
  34. 34.
    Saha S, Mondal S, Ravindran R et al (2007) IL-10 and TGF-β mediated suscetibility in Kalazar and post kalazar dermal leishmaniasis: the significance of amphotericin B in the control of Leishmania donovani infection in India. J. Immunol 179(8):5592–5603PubMedGoogle Scholar
  35. 35.
    Saravia NG, Valderrama L, Labrada M et al (1989) The relationship of Leishmania braziliensis subspecies and immune response to disease expression in new world leishmaniasis. J Infect Dis 159:725–735PubMedCrossRefGoogle Scholar
  36. 36.
    Silveira FT, Lainson R, Corbett CEP (2004) Clinical and immunopathological spectrum of American cutaneous leishmaniasis with special reference to the disease in Amazonian Brazil-A review. Mem Inst Oswaldo Cruz 99(3):239–251PubMedCrossRefGoogle Scholar
  37. 37.
    Silveira FT, Lainson R, Gomes CM et al (2008) Rewing the role of te dendritic Langerhans cells in the immunopathogenesis of American cutaneous leishmaniasis. Trans R Soc Trop Med Hyg 102(11):1075–1080PubMedCrossRefGoogle Scholar
  38. 38.
    Silveira FT, Lainson R, De Castro Gomes CM et al (2009) Immunopathogenic competences of Leishmania (V.) braziliensis and L. (L.) amazonensis in American cutaneous leishmaniasis. Parasite Immunol 31(8):423–431PubMedCrossRefGoogle Scholar
  39. 39.
    Soong L, Henard CA, Melby PC (2012) Immunopathogenesis of non-healing American cutaneous leishmaniasis and progressive visceral leishmaniasis. Semin Immunopathol 34(6):735–751PubMedCrossRefGoogle Scholar
  40. 40.
    Tapia FJ, Díaz NL, Rodriguez OI, Sánchez MA et al (2009) Tegumentary leishmaniasis: immunology and molecular biology. Gazeta Médica da Bahia 79(3):84–90Google Scholar
  41. 41.
    Tripathi P, Singh V, Naik S (2007) Immune response to leishmania: paradox rather than paradigm. FEMS Immunol Med Microbiol 51(2):229–242PubMedCrossRefGoogle Scholar
  42. 42.
    Wahl SM, Swisher J, McCartney-Francis N, Chen W (2004) TGF-beta: the perpetrator of immune suppression by regulatory T cells and suicidal T cells. J Leukoc Biol 76(1):15–24PubMedCrossRefGoogle Scholar
  43. 43.
    Wilson ME, Young BM, Davidson BL et al (1998) The importance of TGF-β in murine visceral leishmaniasis. J. Immunol 161(1):6148–6155PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • F. M. D. Rodrigues
    • 1
  • G. T. Coelho Neto
    • 2
  • J. G. P. B. Menezes
    • 1
  • M. E. A. Gama
    • 3
  • E. G. Gonçalves
    • 2
  • A. R. Silva
    • 2
  • M. D. Laurenti
    • 1
  • C. E. P. Corbett
    • 1
  • F. T. Silveira
    • 4
    • 5
    • 7
  • C. M. C. Gomes
    • 1
    • 6
    Email author
  1. 1.Pathology DepartmentMedical School of São Paulo UniversitySão PauloBrazil
  2. 2.Pathology DepartmentFederal University of MaranhãoSão LuisBrazil
  3. 3.Departamento de Medicina III (Pediatria)Federal University of MaranhãoSão LuisBrazil
  4. 4.Parasitology DepartmentEvandro Chagas Institute (Ministry of Health)AnanindeuaBrazil
  5. 5.Tropical Medicine InstituteFederal University of ParáBelémBrazil
  6. 6.Departamento de PatologiaFaculdade de Medicina Da USPSão PauloBrazil
  7. 7.Tropical Medicine InstitutePará Federal UniversityBelémBrazil

Personalised recommendations