Skip to main content

Advertisement

Log in

Modulation of the pro-inflammatory cytokines and matrix metalloproteinases production in co-cultivated human keratinocytes and melanocytes

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

The human epidermis exerts immunoregulatory functions through the variety of cytokines and other molecules elaborated by keratinocytes and melanocytes. Their constitutive production is very low; however, considerably increased upon stimulation. In vivo, keratinocytes and melanocytes have a typical exposure in the skin, referred as melanocyte epidermal unit. In the present study we co-cultivated these cells in vitro proposing to elucidate some communication links in close cell-to-cell association. We assessed the amounts of IL-6, IL-8, and matrix metalloproteinases (MMP-2 and MMP-9) in individually and co-cultured cells, exposed or not to UVB radiation. Normal human epidermal keratinocytes and melanocytes were grown in specific media and supplements. Cells were exposed to UVB radiation (100 mJ/cm2) to create comparable stress to the environmental one. Cytokines were determined with ELISA and confirmed with Western blot and metalloproteinases with gel zimography. Pure cultures of keratinocytes and melanocytes released low amounts of cytokines and metalloproteinases, these secretions being enhanced by UVB irradiation. In co-cultures, the cell-to-cell proximity triggered signals which markedly augmented the cytokines’ secretions, whereas metalloproteinases were down-regulated. UVB irradiation did not influence either of these secretions in co-cultures. Concurrently with the highest levels of the pro-inflammatory cytokines, MMP-9 was up-regulated creating pro-inflammatory conditions and premises for changes in cellular survival, differentiation and phenotype. A complex network of interactions occurred between keratinocytes and melanocytes in co-cultures, resulting in modulated pro-inflammatory cytokines and metalloproteinases productions. Therefore, any disturbances in the microenvironmental signaling system and its molecular constituents may result in inflammation or even tumorigenesis in the epidermis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2(10):737–744

    Article  PubMed  CAS  Google Scholar 

  2. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106(3):761–771

    Article  PubMed  CAS  Google Scholar 

  3. Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  4. Chung JH, Youn JI (1995) Effect of ultraviolet A on IL-1 production by ultraviolet B in cultured human keratinocytes. J Dermatol Sci 9(2):87–93

    Article  PubMed  CAS  Google Scholar 

  5. Chung JH, Youn SH, Koh WS, Eun HC, Cho KH, Park KC, Youn JI (1996) Ultraviolet B irradiation-enhanced interleukin (IL)-6 production and mRNA expression are mediated by IL-1 alpha in cultured human keratinocytes. J Invest Dermatol 106(4):715–720

    Article  PubMed  CAS  Google Scholar 

  6. Chung JH (2003) Photoaging in Asians. Photodermatol Photoimmunol Photomed 19:109–121

    Article  PubMed  Google Scholar 

  7. Cooper CD, David W (2009) Reliable Mechanisms for reaching the differentiated state: insights from neural crest-derived melanocytes. Sem Cell Dev Biol 20:105–110

    Article  CAS  Google Scholar 

  8. Decean H, Orăsan R (2012) In vitro study regarding the role of keratinocytes and melanocytes in the secretion of IL-1α. ProEnvironment 5:120–124

    Google Scholar 

  9. Duval C, Régnier M, Schmidt R (2001) Distinct melanogenic response of human melanocytes in mono-culture, in co-culture with keratinocytes and in reconstructed epidermis, to UV exposure. Pigment Cell Res 14(5):348–355

    Article  PubMed  CAS  Google Scholar 

  10. Fitzpatrick TB, Breathnach AS (1963) The epidermal melanin unit system [Article in German]. Dermatol Wochenschr 147:481–489

    PubMed  CAS  Google Scholar 

  11. Fukunaga-Kalabis M, Martinez G, Liu ZJ, Kalabis J, Mrass P, Weninger W, Firth SM, Planque N, Perbal B, Herlyn M (2006) CCN3 controls 3D spatial localization of melanocytes in the human skin through DDR1. J Cell Biol 175(4):563–569

    Article  PubMed  CAS  Google Scholar 

  12. Fukunaga-Kalabis M, Martinez G, Telson SM, Liu ZJ, Balint K, Juhasz I, Elder DE, Perbal B, Herlyn M (2008) Downregulation of CCN3 expression as a potential mechanism for melanoma progression. Oncogene 27(18):2552–2560

    Article  PubMed  CAS  Google Scholar 

  13. Fukunaga-Kalabis M, Santiago-Walker A, Herlyn M (2008) Matricellular proteins produced by melanocytes and melanomas: in search for functions. Cancer Microenviron 1(1):93–102

    Article  PubMed  Google Scholar 

  14. Granelli-Piperno A, Reich E (1978) A study of proteases and protease-inhibitor complexes in biological fluids. J Exp Med 148:223–234

    Article  PubMed  CAS  Google Scholar 

  15. Grossman RM, Krueger J, Yourish D, Granelli-Piperno A, Murphy DP, May LT, Kupper TS, Sehgal PB, Gottlieb AB (1989) Interleukin 6 is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proc Natl Acad Sci USA 86(16):6367–6371

    Article  PubMed  CAS  Google Scholar 

  16. Groves RW, Rauschmayr T, Nakamura K, Sarkar S, Williams IR, Kupper TS (1996) Inflammatory and hyperproliferative skin disease in mice that express elevated levels of the IL-1 receptor (type I) on epidermal keratinocytes. Evidence that IL-1-inducible secondary cytokines produced by keratinocytes in vivo can cause skin disease. J Clin Invest. 98(2):336–344

    Article  PubMed  CAS  Google Scholar 

  17. Gröne A (2002) Keratinocytes and cytokines—review. Vet Immunol Immunop 88(1–2):1–12

    Article  Google Scholar 

  18. Hara M, Yaar M, Gilchrest BA (1995) Endothelin-1 of keratinocyte origin is a mediator of melanocyte dendricity. J Invest Dermatol 105(6):744–748

    Article  PubMed  CAS  Google Scholar 

  19. Hirobe T (2005) Role of keratinocyte-derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes—review. Pigment Cell Res 18(1):2–12

    Article  PubMed  CAS  Google Scholar 

  20. Hunt G, Todd C, Thody AJ (1996) Unresponsiveness of human epidermal melanocytes to melanocyte-stimulating hormone and its association with red hair. Mol Cell Endocrinol 116(2):131–136

    Article  PubMed  CAS  Google Scholar 

  21. Joshi PG, Nair N, Begum G, Joshi NB, Sinkar VP, Vora S (2007) Melanocyte-keratinocyte interaction induces calcium signalling and melanin transfer to keratinocytes. Pigment Cell Res 20(5):380–384

    PubMed  CAS  Google Scholar 

  22. Kondo S, Kono T, Sauder DN, McKenzie RC (1993) IL-8 gene expression and production in human keratinocytes and their modulation by UVB. J Invest Dermatol 101(5):690–694

    Article  PubMed  CAS  Google Scholar 

  23. Köck A, Schwarz T, Kirnbauer R, Urbanski A, Perry P, Ansel JC, Luger TA (1990) Human keratinocytes are a source for tumor necrosis factor alpha: evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light. J Exp Med 172(6):1609–1614

    Article  PubMed  Google Scholar 

  24. Kupper TS, Chua AO, Flood P, McGuire J, Gubler U (1987) Interleukin 1 gene expression in cultured human keratinocytes is augmented by ultraviolet irradiation. J Clin Invest 80(2):430–436

    Article  PubMed  CAS  Google Scholar 

  25. Matrisian LM (1994) Matrix metalloproteinase gene expression. Ann NY Acad Sci 732:42–50

    Article  PubMed  CAS  Google Scholar 

  26. Matsue H, Cruz PD Jr, Bergstresser PR, Takashima A (1992) Cytokine expression by epidermal cell subpopulations. J Invest Dermatol 99:42S–45S

    Article  PubMed  CAS  Google Scholar 

  27. McQuibban GA, Gong JH, Wong JP, Wallace JL, Clark-Lewis I, Overall CM (2002) Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood 100(4):1160–1167

    PubMed  CAS  Google Scholar 

  28. Mouchet N, Adamski H, Bouvet R, Corre S, Courbebaisse Y, Watier E, Mosser J, Chesné C, Galibert MD (2010) In vivo identification of solar radiation-responsive gene network: role of the p38 stress-dependent kinase. PLoS One 5(5):e10776

    Article  PubMed  Google Scholar 

  29. Pathak MA, Fitzpatrick TB, Greiter F, Kraus EW (1987) Preventive treatment of sunburn, dermatoheliosis, and skin cancer with sun-protective agents. In: Fitzpatrick TB, Eisen AZ, Wolff K, Freeberg IM, Austen KF (eds) Dermatology in general medicine, 3rd edn. McGraw-Hill Book Co, New York, pp 1507–1522

    Google Scholar 

  30. Perde-Schrepler M, Chereches G, Brie I, Virag P, Barbos O, Soritau O, Tatomir C, Fischer-Fodor E, Filip A, Vlase L, Postescu ID (2011) Photoprotective effect of Calluna vulgaris extract against uvb-induced phototoxicity in human immortalized keratinocytes. J Environ Pathol Toxicol 30(4):323–331

    Article  Google Scholar 

  31. Pillai S, Oresajo C, Hayward J (2005) Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation—a review. Int J Cosmet Sci 27:17–34

    Article  PubMed  CAS  Google Scholar 

  32. Roomi MW, Monterrey JC, Kalinovsky T, Rath M, Niedzwiecki A (2009) Distinct patterns of matrix metalloproteinase-2 and -9 expression in normal human cell lines. Oncol Rep 21(3):821–826

    PubMed  CAS  Google Scholar 

  33. Saldana-Caboverde A, Kos L (2010) Roles of endothelin signaling in melanocyte development and melanoma. Pigm Cell Melanoma Res 23(2):160–170

    Article  CAS  Google Scholar 

  34. Sauder DN (1990) The role of epidermal cytokines in inflammatory skin diseases—review. J Invest Dermatol 95(5 Suppl):27S–28S

    Article  Google Scholar 

  35. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  PubMed  CAS  Google Scholar 

  36. Sulaimon SS, Kitchell BE (2003) The biology of melanocytes. Vet Dermatol 14(2):57–65

    Article  PubMed  Google Scholar 

  37. Takashima A, Bergstresser PR (1996) Impact of UVB radiation on the epidermal cytokine network—review. Photochem Photobiol 63(4):397–400

    Article  PubMed  CAS  Google Scholar 

  38. Taylor CR, Stern RS, Leyden JJ, Gilchrest BA (1990) Photoaging/photodamage and photoprotection. J Am Acad Dermatol 22:1–15

    Article  PubMed  CAS  Google Scholar 

  39. Todd C, Hewitt SD, Kempenaar J, Noz K, Thody AJ, Ponec M (1993) Co-culture of human melanocytes and keratinocytes in a skin equivalent model: effect of ultraviolet radiation. Arch Dermatol Res 285(8):455–459

    Article  PubMed  CAS  Google Scholar 

  40. Uchi H, Terao H, Koga T, Furue M (2000) Cytokines and chemokines in the epidermis. J Dermatol Sci 24(Suppl 1):S29–S38

    Article  PubMed  CAS  Google Scholar 

  41. Welch DR, Sakamaki T, Pioquinto R, Leonard TO, Goldberg SF, Hon Q, Erikson RL, Rieber M, Rieber MS, Hicks DJ, Bonventre JV, Alessandrini A (2000) Transfection of constitutively active mitogen-activated protein/extracellular signal-regulated kinase confers tumorigenic and metastatic potentials to NIH3T3 cells. Cancer Res 60(6):1552–1556

    PubMed  CAS  Google Scholar 

  42. Xue M, Jackson CJ (2008) Autocrine actions of matrix metalloproteinase (MMP)-2 counter the effects of MMP-9 to promote survival and prevent terminal differentiation of cultured human keratinocytes. J Invest Dermatol 128(11):2676–2685

    Article  PubMed  CAS  Google Scholar 

  43. Yaar M, Eller MS, DiBenedetto P, Reenstra WR, Zhai S, McQuaid T, Archambault M, Gilchrest BA (1994) The trk family of receptors mediates nerve growth factor and neurotrophin-3 effects in melanocytes. J Clin Invest 94(4):1550–1562

    Article  PubMed  CAS  Google Scholar 

  44. Zachariae CO, Thestrup-Pedersen K, Matsushima K (1991) Expression and secretion of leukocyte chemotactic cytokines by normal human melanocytes and melanoma cells. J Invest Dermatol 97(3):593–599

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the Executive Unit for Financing Higher Education, Research, Development and Innovation (UEFISCDI), Romania, Code 140/2008, Contract nr. 2/2010.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Virag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Decean, H., Perde-Schrepler, M., Tatomir, C. et al. Modulation of the pro-inflammatory cytokines and matrix metalloproteinases production in co-cultivated human keratinocytes and melanocytes. Arch Dermatol Res 305, 705–714 (2013). https://doi.org/10.1007/s00403-013-1353-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-013-1353-6

Keywords

Navigation