Skip to main content

Advertisement

Log in

Visible effects of rapamycin (sirolimus) on human skin explants in vitro

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

In this manuscript, we report observations of the effects of rapamycin in an organotypic culture of human skin explants. The tissues were cultured for 5 days at the air–liquid interface or in submersed conditions with media with and without rapamycin at 2 nM concentration. Histological analysis of tissue sections indicated that rapamycin-treated samples maintained a better epidermal structure in the upper layers of the tissue than untreated samples, mostly evident when skin was cultured in submersed conditions. A significant decrease in the number of positive proliferative cells using the Ki67 antigen was observed when specimens were treated with rapamycin, in both air–liquid and submersed conditions but apoptosis differences between treated and untreated specimens, as seen by cleaved caspase-3 positive cells, were only observed in submersed specimens. Finally, a decrease and variability in the location in the expression of the differentiation marker involucrin and in E-cadherin were also evident in submersed samples. These results suggest that the development of topical applications containing rapamycin, instead of systemic delivery, may be a useful tool in the treatment of skin diseases that require reduction of proliferation and modulation or control of keratinocyte differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ameglio F, Bonifati C, Fazio M, Mussi A, Trento E, Cordial Fei P, Donati P, Pimpinelli F, D’Auria L, Carducci M (1997) Interleukin-11 production is increased in organ cultures of lesional skin of patients with active plaque-type psoriasis as compared with nonlesional and normal skin. Similarity to interleukin-1 beta, interleukin-6 and interleukin-8. Arch Dermatol Res 289:399–403

    Article  PubMed  CAS  Google Scholar 

  2. Bacqueville D, Mavon A (2008) Caspase-3 activation and DNA damage in pig skin organ culture after solar irradiation. Photochem Photobiol 84:1164–1171

    Article  PubMed  CAS  Google Scholar 

  3. Bansbach C, Wancio D, Caccese RG, Shen CF, Sehgal SN (1993) Rapamycin’s inhibition of thymocyte proliferation, unlike that of cyclosporin A or prednisolone, is not associated with cytotoxicity. Ann N Y Acad Sci 685:114–116

    Article  PubMed  CAS  Google Scholar 

  4. Bridges D, Fisher K, Zolov SN, Xiong T, Inoki K, Weisman LS, Saltiel AR (2012) Rab5 proteins regulate activation and localization of target of rapamycin complex 1. J Biol Chem 287:20913–20921

    Article  PubMed  CAS  Google Scholar 

  5. Butzal M, Loges S, Schweizer M, Fischer U, Gehling UM, Hossfeld DK, Fiedler W (2004) Rapamycin inhibits proliferation and differentiation of human endothelial progenitor cells in vitro. Exp Cell Res 300:65–71

    Article  PubMed  CAS  Google Scholar 

  6. Calne RY, Lim S, Samaan AD, Collier STJ, Pollard SG, White DJG, Thiru S (1989) Rapamycin for immunosuppression in organ allografting. Lancet 334:227

    Article  Google Scholar 

  7. Campistol JM, de Fijter JW, Flechner SM, Langone A, Morelon E, Stockfleth E (2010) mTOR inhibitor-associated dermatologic and mucosal problems. Clin Transpl 24:149–156

    Article  CAS  Google Scholar 

  8. Calautti E, Li J, Saoncella S, Brissete JL, Goetinck PF (2005) Phosphoinositide 3-kinase signalling to Akt promotes keratinocyte differentiation versus death. J Biol Chem 280:32856–32865

    Article  PubMed  CAS  Google Scholar 

  9. Canning MT, Brown DA, Yarosh DB (2003) A bicyclic monoterpene diol and UVB stimulate BRCA1 phosphorylation in human keratinocytes. Photochem Photobiol 77:46–51

    Article  PubMed  CAS  Google Scholar 

  10. Chen S, Nakahara T, Uchi H, Takeuchi S, Takahara M, Kido M, Dugu L, Tu Y, Moroi Y, Furue M (2009) Immunohistochemical analysis of the mammalian target of rapamycin signalling pathway in extramammary Paget’s disease. Br J Dermatol 161:357–363

    Article  PubMed  CAS  Google Scholar 

  11. Duncan JI (1994) Differential inhibition of cutaneous T-cell mediated reactions and epidermal cell proliferation by cyclosporin A, FK-506 and rapamycin. J Invest Dermatol 102:84–88

    Article  PubMed  CAS  Google Scholar 

  12. Engelhart K, El Hindi T, Biesalski HK, Pfitzner I (2005) In vitro reproduction of clinical hallmarks of eczematous dermatitis in organotypic skin models. Arch Dermatol Res 297:1–9

    Article  PubMed  CAS  Google Scholar 

  13. Ferrer IR, Araki K, Ford ML (2011) Paradoxical aspects of rapamycin immunobiology in transplantation. Am J Transpl 11:654–659

    Article  CAS  Google Scholar 

  14. Fried L, Kirsner RS, Bhandarkar S, Arbirser JL (2008) Efficacy of rapamycin in scleroderma: a case study. Lymphat Res Biol 6:217–219

    Article  PubMed  CAS  Google Scholar 

  15. Grando SA, Laquer VT, Le HM (2011) Sirolimus for acute pemphigus vulgaris: a case report and discussion of dualistic action providing for both immunosuppression and keratinocyte protection. J Am Acad Dermatol 65:684–686

    Article  PubMed  Google Scholar 

  16. Hickerson RP, Leake D, Pho LN, Leachman SA, Kaspar RL (2009) Rapamycin selectively inhibits expression of an inducible keratin (K6a) in human keratinocytes and improves symptoms in pachyonychia congenita patients. J Dermatol Sci 56:82–88

    Article  PubMed  CAS  Google Scholar 

  17. Inoki K, Ouyang H, Li Y, Guan KL (2005) Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev 69:79–100

    Article  PubMed  CAS  Google Scholar 

  18. Izumi K, Inoki K, Fujimori Y, Marcelo CL, Feinberg SE (2009) Pharmacological retention of oral mucosa progenitor/stem cells. J Dent Res 88:1113–1118

    Article  PubMed  CAS  Google Scholar 

  19. Janes SM, Ofstad TA, Campbell DH, Eddaoudi A, Warnes G, Davies D, Watt FM (2009) PI3-kinase-dependent activation of apoptotic machinery occurs on commitment of epidermal keratinocytes to terminal differentiation. Cell Res 19:328–339

    Article  PubMed  CAS  Google Scholar 

  20. Javier AF, Bata-Csorgo Z, Ellis CN, Kang S, Voorhes JJ (1997) Rapamycin (Sirolimus) inhibits proliferating cell nuclear antigen expression and blocks cell cycle in the G1 phase in human keratinocyte stem cells. J Clin Invest 99:2094–2099

    Article  PubMed  CAS  Google Scholar 

  21. Kleszczynski k, Fischer TW (2012) Development of a short-term human full-thickness skin organ culture model in vitro under serum-free conditions. Arch Dermatol Res. doi:10.1007/s00403-012-1239-z

    PubMed  Google Scholar 

  22. Kooy AJ, Tank B, de Jong AA, Vuzevski VD, van der Kwast TH, van Joost T (1999) Expression of E-cadherin, alpha- & beta-catenin, and CD44V6 and the subcellular localization of E-cadherin and CD44V6 in normal epidermis and basal cell carcinoma. Hum Pathol 30:1328–1335

    Article  PubMed  CAS  Google Scholar 

  23. Lebonvallet N, Jeanmaire C, Danoux L, Sibille P, Pauly G, Misery L (2010) The evolution and use of skin explants: potential and limitations for dermatological research. Eur J Dermatol 20:671–684

    PubMed  Google Scholar 

  24. Loewe R, Oble DA, Valero T, Zukerberg L, Mihm MC Jr, Nelson JS (2010) Stem cell marker upregulation in normal cutaneous vessels following pulsed-dye laser exposure and its abrogation by concurrent rapamycin administration: implications for treatment of port-wine stain birthmarks. J Cutan Pathol 37:76–82

    Article  PubMed  Google Scholar 

  25. Luan FL, Hojo M, Maluccio M, Yamaji K, Suthanthiran M (2002) Rapamycin blocks tumor progression unlinking immunosuppression from antitumor efficacy. Transplantation 73:1565–1572

    Article  PubMed  CAS  Google Scholar 

  26. Ma J, Meng Y, Kwiatkowski DJ, Chen X, Peng H, Sun Q, Zha X, Wang F, Wang Y, Jing Y, Zhang S, Chen R, Wang L, Wu E, Cai G, Malinowska-Kolodziej I, Liao Q, Liu Y, Zhao Y, Sun Q, Xu K, Dai J, Han J, Wu L, Zhao RC, Shen H, Zhang H (2010) Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade. J Clin Invest 120:103–114

    Article  PubMed  CAS  Google Scholar 

  27. Mass P, Hoffmann K, Gambichler T, Altmeyer P, Mannherz HG (2003) Premature keratinocyte death and expression of marker proteins of apoptosis in human skin after UVB exposure. Arch Dermatol Res 295:71–79

    Article  PubMed  CAS  Google Scholar 

  28. Micozkadioglu H, Koc Z, Ozelsancak R, Yildiz I (2010) Rapamycin therapy for renal, brain, and skin lesions in a tuberous sclerosis patient. Ren Fail 32:1233–1236

    Article  PubMed  Google Scholar 

  29. Ong CT, Khoo YT, Mukhopadhyay A, Do DV, Lim IJ, Aalami O, Phan TT (2007) mTOR as a potential therapeutic target for treatment of keloids and excessive scars. Exp Dermatol 16:394–404

    Article  PubMed  CAS  Google Scholar 

  30. Ormerod AD, Shah SA, Copeland P, Omar G, Winfield A (2005) Treatment of psoriasis with topical sirolimus: preclinical development and a randomized, double-blind trial. Br J Dermatol 152:758–764

    Article  PubMed  CAS  Google Scholar 

  31. Paghdal KV, Schwartz RA (2007) Sirolimus (rapamycin): from the soil of Easter Island to a bright future. J Am Acad Dermatol 57:1046–1050

    Article  PubMed  Google Scholar 

  32. Peramo A, Marcelo CL, Goldstein SA, Martin DC (2009) Novel organotypic cultures of human skin explants with an implant-tissue biomaterial interface. Ann Biomed Eng 37:401–409

    Article  PubMed  Google Scholar 

  33. Peramo A, Marcelo CL, Goldstein SA, Martin DC (2010) Improved preservation of the tissue surrounding percutaneous devices by hyaluronic acid and dermatan sulfate in a human skin explant model. Ann Biomed Eng 38:1098–1110

    Article  PubMed  Google Scholar 

  34. Pretel M, Espana A, Marquina M, Pelacho B, Lopez-Picazo JM, Lopez-Zabalza MJ (2009) An imbalance in Akt/mTOR is involved in the apoptotic and acantholytic processes in a mouse model of pemphigus vulgaris. Exp Dermatol 18:771–780

    Article  PubMed  CAS  Google Scholar 

  35. Raimondi AR, Molinolo A, Gutkind JS (2009) Rapamycin prevents early onset of tumorigenesis in an oral-specific K-ras and p53 two-hit carcinogenesis model. Cancer Res 69:4159–4166

    Article  PubMed  CAS  Google Scholar 

  36. Saggar S, Zeichner JA, Brown TT, Phelps RG, Cohen SR (2008) Kaposi’s sarcoma resolves after sirolimus therapy in a patient with Pemphigus Vulgaris. Arch Dermatol 144:654–657

    Article  PubMed  Google Scholar 

  37. Thrash B, Menges CW, Pierces RH, McCance DJ (2006) AKT1 provides an essential survival signal for differentiation and stratification of primary human keratinocytes. J Biol Chem 281:12155–12162

    Article  PubMed  CAS  Google Scholar 

  38. Toso C, Patel S, Asthana S, Kawahara T, Girgis S, Kneteman NN, Shapiro AMJ, Bigam DL (2010) The impact of sirolimus on hepatocyte proliferation after living donor liver transplantation. Clin Transpl 24:695–700

    Article  CAS  Google Scholar 

  39. Wu MJ, Wen MC, Chiu YT, Chiou YY, Shu KH, Tang MJ (2006) Rapamycin attenuates unilateral ureteral obstruction-induced renal fibrosis. Kidney Int 69:2029–2036

    Article  PubMed  CAS  Google Scholar 

  40. Young CN, Koepke JI, Terlecky LJ, Borkin MS, Boyd Savoy L, Terlecky SR (2008) Reactive oxygen species in tumor necrosis factor-a-activated primary human keratinocytes: implications for psoriasis and inflammatory skin disease. J Invest Dermatol 128:2606–2614

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Peramo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 288 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peramo, A., Marcelo, C.L. Visible effects of rapamycin (sirolimus) on human skin explants in vitro. Arch Dermatol Res 305, 163–171 (2013). https://doi.org/10.1007/s00403-012-1288-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-012-1288-3

Keywords

Navigation