Skip to main content

Advertisement

Log in

Keratinocyte-based cell assays: their potential pitfalls

  • Short Communication
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

As an in vitro model system, patient-derived epidermolysis bullosa simplex keratinocytes have had an immense impact on what we know today about keratin filament function and their role in disease development. In the absence of gene therapy, screening compound libraries for new or better drugs is another approach to improve existing treatments for genodermatoses. However in this study, we report of the potential pitfalls when using this type of cell lines as a “reporter” system. When cell lines with different genetic backgrounds are being used in cell-based assays, the greatest obstacle is to determine the most appropriate culture conditions (i.e., the composition of medium, number of cells plated and number of days in culture). We demonstrate how culture conditions can greatly interfere with the cellular response in cell-based assays (cell proliferation, metabolic activity and migration), potentially also giving rise to misleading data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Beriault DR, Haddad O, McCuaig JV et al (2012) The mechanical behavior of mutant K14–R125P keratin bundles and networks in NEB-1 keratinocytes. PLoS ONE 7:e31320

    Article  PubMed  CAS  Google Scholar 

  2. Chamcheu JC, Lorié EP, Akgul B et al (2009) Characterization of immortalized human epidermolysis bullosa simplex (KRT5) cell lines: trimethylamine N-oxide protects the keratin cytoskeleton against disruptive stress condition. J Dermatol Sci 53:198–206

    Article  PubMed  CAS  Google Scholar 

  3. Chamcheu JC, Navsaria H, Pihl-Lundin I et al (2011) Chemical chaperones protect epidermolysis bullosa simplex keratinocytes from heat stress-induced keratin aggregation: involvement of heat shock proteins and MAP kinases. J Invest Dermatol 131:1684–1691

    Article  PubMed  CAS  Google Scholar 

  4. Coulombe PA, Lee CH (2012) Defining keratin protein function in skin epithelia: epidermolysis bullosa simplex and its aftermath. J Invest Dermatol 132:763–775

    Article  PubMed  CAS  Google Scholar 

  5. Fine JD, Eady RAJ, Bauer EA et al (2008) The classification of inherited epidermolysis bullosa (EB): report of the third international consensus meeting on diagnosis and classification of EB. J Am Acad Dermatol 58:931–950

    Article  PubMed  Google Scholar 

  6. Fudge DS, Gardner KH, Forsyth VT et al (2003) The mechanical properties of hydrated intermediate filaments: insights from hagfish slime threads. Biophys J 85:2015–2027

    Article  PubMed  CAS  Google Scholar 

  7. Fudge D, Russell D, Beriault D et al (2008) The intermediate filament network in cultured human keratinocytes is remarkably extensible and resilient. PLoS ONE 3:e2327

    Article  PubMed  Google Scholar 

  8. Kerns ML, DePianto D, Dinkova-Kostova AT et al (2007) Reprogramming of keratin biosynthesis by sulforaphane restores skin integrity in epidermolysis bullosa simplex. Proc Natl Acad Sci USA 104:14460–14465

    Article  PubMed  CAS  Google Scholar 

  9. Kiuru M, Itoh M, Cairo MS et al (2010) Bone marrow stem cell therapy for recessive dystrophic epidermolysis bullosa. Dermatol Clin 28:371–382

    PubMed  CAS  Google Scholar 

  10. Leachman SA, Hickerson RP, Schwartz ME et al (2009) First-in-human mutation-targeted siRNA phase Ib trial of an inherited skin disorder. Mol Ther 18:442–446

    Article  PubMed  Google Scholar 

  11. Lu H, Chen J, Planko L, Zigrino P et al (2007) Induction of inflammatory cytokines by a keratin mutation and their repression by a small molecule in a mouse model for EBS. J Invest Dermatol 127:2781–2789

    PubMed  CAS  Google Scholar 

  12. Morley SM, D’Alessandro M, Sexton C et al (2003) Generation and characterization of epidermolysis bullosa simplex cell lines: scratch assays show faster migration with disruptive keratin mutations. Br J Dermatol 149:46–58

    Article  PubMed  CAS  Google Scholar 

  13. Wagner JE, Ishida-Yamamoto A, McGrath JA et al (2010) Bone marrow transplantation for recessive dystrophic epidermolysis bullosa. N Engl J Med 363:629–639

    Article  PubMed  CAS  Google Scholar 

  14. Wong T, Gammon L, Liu L et al (2008) Potential of fibroblast cell therapy for recessive dystrophic epidermolysis bullosa. J Invest Dermatol 128:2179–2189

    Article  PubMed  CAS  Google Scholar 

  15. Yamada S, Wirtz D, Coulombe PA (2003) The mechanical properties of epithelial keratins 8 and 18: discriminating between interfacial and bulk elasticities. J Struct Biol 143:45–55

    Article  PubMed  CAS  Google Scholar 

  16. Zhao Y, Gartner U, Smith FJ et al (2011) Statins downregulate K6a promoter activity: a possible therapeutic avenue for pachyonychia congenita. J Invest Dermatol 131:1045–1052

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Slovenian Research Agency for funding our research through grants J3-2274-0381 and J3-3617-0381 to M. Liovic.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjana Liovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zupancic, T., Ozir, M., Törmä, H. et al. Keratinocyte-based cell assays: their potential pitfalls. Arch Dermatol Res 304, 765–768 (2012). https://doi.org/10.1007/s00403-012-1285-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-012-1285-6

Keywords

Navigation