Skip to main content

Advertisement

Log in

Sialic acids and antimicrobial substances in the apocrine glands of porcine perianal skin

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

The porcine perianal skin shows prominent apocrine glands with large saccular dilatations, whereby the functional significance of the glandular secretions is rather unexplained. Our study focuses on the demonstration of sialoglycoconjugates and antimicrobial substances in these glands, using glycoconjugate histochemical and immunohistochemical methods. The result obtained emphasized the general presence of sialic acids, linked to α2-6Gal/GalNAc and α2-3Gaβl1-4GlcNAc, in the secretory cells. The secretory epithelium and luminal secretions also contained a spectrum of antimicrobial substances, such as lysozyme, IgA, lactoferrin, and the peptide group of β-defensins. Realizing that sialic acids possess diverging functional properties through various saccharide residues, and that antimicrobial substances serve as a non-specific defense against microorganisms, these secretory products may function as protective agents in order to preserve the integrity of the perianal region. This view includes that the amounts of bacteria on the skin surface are controlled and maintained at the certain level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Figs. 3–6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bos JD, Pasch MC, Asghar SS (2001) Defensins and complement systems from the perspective of skin immunity and autoimmunity. Clin Dermatol 19:563–572

    Article  PubMed  CAS  Google Scholar 

  2. Brandtzaeg P (1977) Immunohistochemical studies on various aspects of glandular immunoglobulin transport in man. Histochem J 9:553–572

    Article  PubMed  CAS  Google Scholar 

  3. Casselman WGB (1959) Histochemical technique. Methuen, London

    Google Scholar 

  4. Corthésy B (2010) Role of secretory immunoglobulin A and secretory component in the protection of mucosal surfaces. Future Microbiol 5:817–829

    Article  PubMed  Google Scholar 

  5. Danguy A (1995) Perspectives in modern glycohistochemistry. Eur J Histochem 39:5–14

    PubMed  CAS  Google Scholar 

  6. Fagarasan S, Honjo T (2003) Intestinal IgA synthesis: regulation of front-line body defenses. Nat Rev Immunol 3:63–72

    Article  PubMed  CAS  Google Scholar 

  7. Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720

    Article  PubMed  CAS  Google Scholar 

  8. Ganz T (2004) Defensins: antimicrobial peptides of vertebrates. CR Biol 327:539–549

    Article  CAS  Google Scholar 

  9. Gargiulo AM, Pedini V, Ceccarelli P (1989) The process of secretion in swine apocrine sweat glands. Anat Histol Embryol 19:264–268

    Article  Google Scholar 

  10. Hornickel I, Kacza J, Schnapper A, Beyerbach M, Schoennagel B, Seeger J, Meyer W (2011) Demonstration of substances of innate immunity in the esophagus epithelium of domesticated mammals. Part I—methods and comparative fixation evaluation. Acta Histochem 113:163–174

    Article  CAS  Google Scholar 

  11. Hornickel I, Kacza J, Schnapper A, Beyerbach M, Schoennagel B, Seeger J, Meyer W (2011) Demonstration of substances of innate immunity in the esophagus epithelium of domesticated mammals. Part II—defence mechanisms, including species comparison. Acta Histochem 113:175–188

    Article  CAS  Google Scholar 

  12. Inamoto T, Kawata Y, Qi WM, Yamamoto K, Warita K, Kawano J, Yokoyama T, Hoshi N, Kitagawa H (2008) Ultrastructural study on the epithelial response against attachment of indigenous bacteria to epithelial membranes in Peyer’s patches of rat small intestine. J Vet Med Sci 70:235–241

    Article  PubMed  Google Scholar 

  13. Kaetzel CS, Robinson JK, Chintalacharuvu KR, Vaerman JP, Lamm ME (1991) The polymeric immunoglobulin receptor (secretory component) mediates transport of immune complexes across epithelial cells: a local defense function for IgA. Proc Natl Acad Sci USA 88:8796–8800

    Article  PubMed  CAS  Google Scholar 

  14. Kelm S, Schauer R (1997) Sialic acids in molecular and cellular interactions. Int Rev Cytol 175:137–240

    Article  PubMed  CAS  Google Scholar 

  15. Kimber I, Cumberbatch M, Dearman RJ, Headon DR, Bhushan M, Griffiths CE (2002) Lactoferrin: influences on Langerhans cells, epidermal cytokines, and cutaneous inflammation. Biochem Cell Biol 80:103–107

    Article  PubMed  CAS  Google Scholar 

  16. Levay PF, Viljoen M (1995) Lactoferrin: a general review. Haematologica 80:252–267

    PubMed  CAS  Google Scholar 

  17. Lotz M, Ménard S, Hornef M (2007) Innate immune recognition on the intestinal mucosa. Int J Med Microbiol 297:379–392

    Article  PubMed  CAS  Google Scholar 

  18. Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 9:409–414

    Article  PubMed  CAS  Google Scholar 

  19. Meyer W, Tsukise A, Neurand K (1983) SEM and carbohydrate histochemical aspects of the glands in the anal region of the pig. Z Säugetierkunde 48:245–255

    Google Scholar 

  20. Meyer W (1986) Die Haut des Schweines (The porcine integument). Schlueter Publ, Hannover

    Google Scholar 

  21. Meyer W, Bartels T (1989) Histochemical study on the eccrine glands in the foot pad of the cat. Bas Appl Histochem 33:219–238

    CAS  Google Scholar 

  22. Meyer W, Saglam M, Tanyolaç A, Schwarz R (1993) Carbohydrate histochemistry of skin glands in the Turkish Angora goat. Eur J Morphol 31:157–167

    PubMed  CAS  Google Scholar 

  23. Meyer W, Seegers U, Herrmann J, Schnapper A (2003) Further aspects of general antimicrobial properties of skin secretions of pinnipeds. Dis Aquat Org 44:177–179

    Article  Google Scholar 

  24. Meyer W (2007) Demonstration of lysozyme and antimicrobial peptides in the temporal gland of the African elephant (Loxodonta africana). Mamm Biol 72:251–255

    Article  Google Scholar 

  25. Meyer W, Seegers U, Schnapper A, Neuhaus H, Himstedt W, Toepfer-Petersen E (2007) Presence of free sugars on the epidermal surface of aquatic vertebrates and their possible involvement in antimicrobial defense. Aquatic Biol 1:167–175

    Article  CAS  Google Scholar 

  26. Morrow AL, Ruiz-Palacios GM, Jiang X, Newburg DS (2005) Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. J Nutr 135:1304–1307

    PubMed  CAS  Google Scholar 

  27. Muhkerjee S, Vaishnava S, Hooper LV (2008) Multi-layered regulation of intestinal antimicrobial defense. Cell Mol Life Sci 65:3019–3027

    Article  Google Scholar 

  28. Nara T, Yasui T, Meyer W, Tsukise A (2012) Histochemical demonstration of sialic acids and antimicrobial substances in the porcine anal glands. Acta Histochem 114:327–333

    Article  PubMed  CAS  Google Scholar 

  29. Newman GR, Jasani B, Williams ED (1983) A simple post-embedding system for the rapid demonstration of tissue antigens under the electron microscope. Histochem J 15:543–555

    Article  PubMed  CAS  Google Scholar 

  30. Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  PubMed  CAS  Google Scholar 

  31. Schauer R (2004) Sialic acids: fascinating sugars in higher animals and man. Zoology 107:49–64

    Article  PubMed  CAS  Google Scholar 

  32. Schauer R (2009) Sialic acids as regulators of molecular and cellular interactions. Curr Opin Struct Biol 19:507–514

    Article  PubMed  CAS  Google Scholar 

  33. Shi J, Zhang G, Wu H, Ross C, Blecha F, Ganz T (1999) Porcine epithelial β-defensin 1 is expressed in the dorsal tongue at antimicrobial concentrations. Infect Immun 67:3121–3127

    PubMed  CAS  Google Scholar 

  34. Snoeck V, Peters I, Cox E (2006) The IgA system: a comparison of structure and function in different species. Vet Res 37:455–567

    Article  PubMed  CAS  Google Scholar 

  35. Stoeckelhuber M, Stoeckelhuber BM, Welsch U (2003) Human glands of Moll: histochemical and ultrastructural characterization of the glands of Moll in the human eyelid. J Invest Dermatol 121:28–36

    Article  PubMed  CAS  Google Scholar 

  36. Stoeckelhuber M, Stoeckelhuber BM, Welsch U (2004) Apocrine glands in the eyelid of primates contribute to the ocular host defense. Cells Tiss Org 176:187–194

    Article  Google Scholar 

  37. Stoeckelhuber M, Matthias C, Andratschke M, Stoeckelhuber BM, Koehler C, Herzmann S, Sulz A, Welsch U (2006) Human ceruminous gland: ultrastructure and histochemical analysis of antimicrobial and cytoskeletal components. Anat Rec A Discov Mol Cell Evol Biol 288:877–884

    PubMed  Google Scholar 

  38. Stoeckelhuber M, Messmer EM, Schubert C, Stoeckelhuber BM, Koehler C, Welsch U, Bals R (2008) Immunolocalization of defensins and cathelicidin in human glands of Moll. Ann Anat 190:230–237

    Article  PubMed  Google Scholar 

  39. Suzuki Y (2005) Sialobiology of influenza molecular mechanism of host range variation of influenza viruses. Biol Pharm Bull 28:399–408

    Article  PubMed  CAS  Google Scholar 

  40. Tsukise A, Yamada K (1981) The histochemistry of complex carbohydrates in the scrotum of the boar. Histochemistry 72:511–521

    Article  PubMed  CAS  Google Scholar 

  41. Tsukise A, Meyer W (1983) Histochemistry complex carbohydrates in the hairy skin of the domestic pig. Histochem J 15:845–860

    Article  PubMed  CAS  Google Scholar 

  42. Valenti P, Marchetti M, Superti F, Amendolia MG, Puddu P, Gessani S, Borghi P, Belardelli F, Antonini G, Seganti L (1998) Antiviral activity of lactoferrin. Adv Exp Med Biol 443:199–203

    PubMed  CAS  Google Scholar 

  43. Varki A, Schauer R (2009) Sialic acids. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harber Laboratory Press, New York, pp 199–218

    Google Scholar 

  44. Ward PP, Uribe-Luna S, Connelly OM (2002) Lactoferrin and host defense. Biochem Cell Biol 80:95–102

    Article  PubMed  CAS  Google Scholar 

  45. Watson ML (1958) Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol 4:475–478

    Article  PubMed  CAS  Google Scholar 

  46. Yamada K (1993) Histochemistry of carbohydrates as performed by physical development procedures. Histochem J 25:95–106

    Article  PubMed  CAS  Google Scholar 

  47. Yang D, Chertov O, Oppenheim JJ (2001) The role of mammalian antimicrobial peptides and proteins in awakening of innate host defense and adaptive immunity. Cell Mol Life Sci 58:978–989

    Article  PubMed  CAS  Google Scholar 

  48. Yasui T, Tsukise A, Fukui K, Kuwahara K, Meyer W (2005) Aspects of glycoconjugate production and lysozyme- and defensin-expression of the ceruminous glands of the horse (Equus prezewalskii f. dom.). Eur J Morphol 42:127–134

    Article  PubMed  Google Scholar 

  49. Yasui T, Tsukise A, Nara T, Kuwahara Y, Meyer W (2006) Morphological, histochemical and immunohistochemical characterization of secretory products of the ciliary glands in the porcine eyelid. Eur J Histochem 50:99–108

    PubMed  CAS  Google Scholar 

  50. Zhang G, Wu H, Shi J, Ganz T, Ross CR, Blecha F (1998) Molecular cloning and tissue expression of porcine β-defensin-1. FEBS Lett 424:37–40

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azuma Tsukise.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nara, T., Yasui, T., Fujimori, O. et al. Sialic acids and antimicrobial substances in the apocrine glands of porcine perianal skin. Arch Dermatol Res 304, 609–617 (2012). https://doi.org/10.1007/s00403-012-1280-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-012-1280-y

Keywords

Navigation