Skip to main content

Advertisement

Log in

Cancer stem-like cells enriched with CD29 and CD44 markers exhibit molecular characteristics with epithelial–mesenchymal transition in squamous cell carcinoma

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

An Erratum to this article was published on 07 April 2017

Abstract

Increasing evidences have indicated that only a phenotypic subset of cancer cells, termed as the cancer stem cells (CSCs), is capable of initiating tumor growth and provide a reservoir of cells that cause tumor recurrence after therapy. Epithelial–mesenchymal transition (EMT), a cell type change from an epithelial cobblestone phenotype to an elongated fibroblastic phenotype, plays a critical role not only in tumor metastasis but also in tumor recurrence and contributes to drug resistance. Accumulating evidence has shown that cells with an EMT phenotype are rich sources for CSCs, suggesting a biological link between EMT and CSCs; thus study on the link will help understand the cellular and molecular mechanisms of tumor metastasis and drug resistance. CD29 is involved in EMT through cross-talk with cadherins and CD44 has been reported as a successful used marker for CSCs. Here, we try to address whether combination of CD29 and CD44 could be used to identify cancer stem-like cells undergoing EMT in squamous cell carcinoma (SCC) and compare the molecular differences between CD29high/CD44high and CD29low/CD44low cells in SCC. Expression pattern of CD29 and CD44 was analyzed in tissues of skin SCC and cultured A431 cells by immunostaining. Subtype cells of CD29high/CD44high and CD29low/CD44low A431 were sorted by fluorescence-activated cell sorting and proliferating abilities were assayed by cell counting, colony forming and tumorigenicity in NOD/SCID mice. Finally, to probe more deeply into the molecular differences between CD29high/CD44high and CD29low/CD44low A431 cells, gene microarray analysis was applied to compare gene expression profiling. Staining of CD29 and CD44 showed similar heterogeneous expression pattern with positive cells located in the invasion front of SCC tissue as well as in cultured A431 cells. Sorted CD29high/CD44high A431 cells had higher proliferating ability in vitro and in NOD/SCID mice as compared with CD29low/CD44low cells. Gene profiling identified differentiated gene expressions between CD29high/CD44high and CD29low/CD44low A431 cells. These genes are involved in cell cycle, cell malignant transformation, metastasis, drug resistance and EMT, implying that CD29high/CD44high cells have properties of CSCs and EMT. Our present results demonstrated heterogeneous gene expression patterns and different biological behavior in SCC. Combination of CD29 and CD44 can be used as markers to enrich CSCs in human SCC. Moreover, CD29high/CD44high cells exhibit molecular characteristics of EMT, suggesting that CSC-associated pathways were involved in EMT. Studies on correlation of CSCs and the cells undergoing EMT may explain some aspects of tumor progression and drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  PubMed  CAS  Google Scholar 

  2. Allen WL, McLean EG, Boyer J, McCulla A, Wilson PM, Coyle V, Longley DB, Casero RA Jr, Johnston PG (2007) The role of spermidine/spermine N1-acetyltransferase in determining response to chemotherapeutic agents in colorectal cancer cells. Mol Cancer Ther 6(1):128–137

    Article  PubMed  CAS  Google Scholar 

  3. Alvarez H, Montgomery EA, Karikari C, Canto M, Dunbar KB, Wang JS, Feldmann G, Hong SM, Haffner MC, Meeker AK, Holland SJ, Yu J, Heckrodt TJ, Zhang J, Ding P, Goff D, Singh R, Roa JC, Marimuthu A, Riggins GJ, Eshleman JR, Nelkin BD, Pandey A, Maitra A (2010) The Axl receptor tyrosine kinase is an adverse prognostic factor and a therapeutic target in esophageal adenocarcinoma. Cancer Biol Ther 10(10):18–1009

    Google Scholar 

  4. Argast GM, Croy CH, Couts KL, Zhang Z, Litman E, Chan DC, Ahn NG (2009) Plexin B1 is repressed by oncogenic B-Raf signaling and functions as a tumor suppressor in melanoma cells. Oncogene 28(30):2697–2709

    Article  PubMed  CAS  Google Scholar 

  5. Atsumi N, Ishii G, Kojima M, Sanada M, Fujii S, Ochiai A (2008) Podoplanin, a novel marker of tumor-initiating cells in human squamous cell carcinoma A431. Biochem Biophys Res Commun 373(1):36–41

    Article  PubMed  CAS  Google Scholar 

  6. Biddle A, Liang X, Gammon L, Fazil B, Harper LJ, Emich H, Costea DE, Mackenzie IC (2011) Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Res 71(15):5317–5326

    Article  PubMed  CAS  Google Scholar 

  7. Blick T, Hugo H, Widodo E, Waltham M, Pinto C, Mani SA, Weinberg RA, Neve RM, Lenburg ME, Thompson EW (2010) Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. J Mammary Gland Biol Neoplasia 15(2):235–252

    Article  PubMed  Google Scholar 

  8. Bortolomai I, Canevari S, Facetti I, De Cecco L, Castellano G, Zacchetti A, Alison MR, Miotti S (2010) Tumor initiating cells: development and critical characterization of a model derived from the A431 carcinoma cell line forming spheres in suspension. Cell Cycle 9(6):1194–1206

    Article  PubMed  CAS  Google Scholar 

  9. Brakebusch C, Fässler R (2005) β1 integrin function in vivo: adhesion, migration and more. Cancer Metastasis Rev 24(3):403–411

    Article  PubMed  CAS  Google Scholar 

  10. Chovanec M, Smetana K Jr, Betka J, Plzák J, Brabec J, Moya-Alvarez V, André S, Kodet R, Gabius HJ (2005) Correlation of expression of nuclear proteins pKi67 and p63 with lectin histochemical features in head and neck squamous cell cancer. Int J Oncol 27(2):409–415

    PubMed  CAS  Google Scholar 

  11. Christiansen JJ, Rajasekaran AK (2006) Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 66(17):8319–8326

    Article  PubMed  CAS  Google Scholar 

  12. Chu P, Clanton DJ, Snipas TS, Lee J, Mitchell E, Nguyen ML, Hare E, Peach RJ (2009) Characterization of a subpopulation of colon cancer cells with stem cell-like properties. Int J Cancer 124(6):1312–1321

    Article  PubMed  CAS  Google Scholar 

  13. Cui H, Darmanin S, Natsuisaka M, Kondo T, Asaka M, Shindoh M, Higashino F, Hamuro J, Okada F, Kobayashi M, Nakagawa K, Koide H, Kobayashi M (2007) Enhanced expression of asparagine synthetase under glucose-deprived conditions protects pancreatic cancer cells from apoptosis induced by glucose deprivation and cisplatin. Cancer Res 67(7):3345–3355

    Article  PubMed  CAS  Google Scholar 

  14. Dokmanovic M, Chang BD, Fang J, Roninson IB (2002) Retinoid-induced growth arrest of breast carcinoma cells involves co-activation of multiple growth-inhibitory genes. Cancer Biol Ther 1(1):24–27

    PubMed  CAS  Google Scholar 

  15. Finlan LE, Hupp TR (2006) Epidermal stem cells and cancer stem cells: insights into cancer and potential therapeutic strategies. Eur J Cancer 42(9):1283–1292

    Article  PubMed  CAS  Google Scholar 

  16. Geng S, Wang Q, Wang J, Hu Z, Liu C, Qiu J, Zeng W (2011) Isolation and identification of a distinct side population cancer cells in the human epidermal squamous cancer cell line A431. Arch Dermatol Res 303(3):181–189

    Article  PubMed  CAS  Google Scholar 

  17. Gerdes MJ, Yuspa SH (2005) The contribution of epidermal stem cells to skin cancer. Stem Cell Rev 1(3):225–231

    Article  PubMed  CAS  Google Scholar 

  18. Gómez Román JJ, Garay GO, Saenz P, Escuredo K, Sanz Ibayondo C, Gutkind S, Junquera C, Simón L, Martínez A, Fernández Luna JL, Val-Bernal JF (2008) Plexin B1 is downregulated in renal cell carcinomas and modulates cell growth. Transl Res 151(3):134–140

    Article  PubMed  Google Scholar 

  19. Green J, Ikram M, Vyas J, Patel N, Proby CM, Ghali L, Leigh IM, O’Toole EA, Storey A (2006) Overexpression of the Axl tyrosine kinase receptor in cutaneous SCC-derived cell lines and tumours. Br J Cancer 94(10):1446–1451

    Article  PubMed  CAS  Google Scholar 

  20. Hölzel M, Huang S, Koster J, Ora I, Lakeman A, Caron H, Nijkamp W, Xie J, Callens T, Asgharzadeh S, Seeger RC, Messiaen L, Versteeg R, Bernards R (2010) NF1 is a tumor suppressor in neuroblastoma that determines retinoic acid response and disease outcome. Cell 142(2):218–229

    Article  PubMed  Google Scholar 

  21. Horst D, Kriegl L, Engel J, Kirchner T, Jung A (2009) Prognostic significance of the cancer stem cell markers CD133, CD44, and CD166 in colorectal cancer. Cancer Invest 27(8):844–850

    Article  PubMed  Google Scholar 

  22. Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, Thompson EW (2007) Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J Cell Physiol 213(2):374–383

    Article  PubMed  CAS  Google Scholar 

  23. Jensen KB, Jones J, Watt FM (2008) A stem cell gene expression profile of human squamous cell carcinomas. Cancer Lett 272(1):23–31

    Article  PubMed  CAS  Google Scholar 

  24. Jones PH, Watt FM (1993) Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73(4):713–724

    Article  PubMed  CAS  Google Scholar 

  25. Kamstrup MR, Gniadecki R, Skovgaard GL (2007) Putative cancer stem cells in cutaneous malignancies. Exp Dermatol 16(4):297–301

    Article  PubMed  Google Scholar 

  26. Kanehira M, Harada Y, Takata R, Shuin T, Miki T, Fujioka T, Nakamura Y, Katagiri T (2007) Involvement of upregulation of DEPDC1 (DEP domain containing 1) in bladder carcinogenesis. Oncogene 26(44):6448–6455

    Article  PubMed  CAS  Google Scholar 

  27. Keating AK, Kim GK, Jones AE, Donson AM, Ware K, Mulcahy JM, Salzberg DB, Foreman NK, Liang X, Thorburn A, Graham DK (2010) Inhibition of Mer and Axl receptor tyrosine kinases in astrocytoma cells leads to increased apoptosis and improved chemosensitivity. Mol Cancer Ther 9(5):1298–1307

    Article  PubMed  CAS  Google Scholar 

  28. Koo BH, Hurskainen T, Mielke K, Aung PP, Casey G, Autio-Harmainen H, Apte SS (2007) ADAMTSL3/punctin-2, a gene frequently mutated in colorectal tumors, is widely expressed in normal and malignant epithelial cells, vascular endothelial cells and other cell types, and its mRNA is reduced in colon cancer. Int J Cancer 121(8):1710–1716

    Article  PubMed  CAS  Google Scholar 

  29. Liu B, Sun H, Wang W, Li W, Yan YF, Chen SM, Yang YP, Xu CX, Xin JX, Liu XX (2009) Adenovirus vector-mediated upregulation of spermidine/spermine N1-acetyltransferase impairs human gastric cancer growth in vitro and in vivo. Cancer Sci 100(11):2126–2132

    Article  PubMed  CAS  Google Scholar 

  30. Locke M, Heywood M, Fawell S, Mackenzie IC (2005) Retention of intrinsic stem cell hierarchies in carcinoma-derived cell lines. Cancer Res 65(19):8944–8950

    Article  PubMed  CAS  Google Scholar 

  31. Mackenzie IC (2004) Growth of malignant oral epithelial stem cells after seeding into organotypical cultures of normal mucosa. J Oral Pathol Med 33(2):71–78

    Article  PubMed  Google Scholar 

  32. Mackenzie IC (2004) Retention of stem cell patterns in malignant cell lines. Cell Prolif 38(6):347–355

    Article  Google Scholar 

  33. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715

    Article  PubMed  CAS  Google Scholar 

  34. Meester-Smoor MA, Janssen MJ, Grosveld GC, de Klein A, van IJcken WF, Douben H, Zwarthoff EC (2008) MN1 affects expression of genes involved in hematopoiesis and can enhance as well as inhibit RAR/RXR-induced gene expression. Carcinogenesis 29(10):2025–2034

    Article  PubMed  CAS  Google Scholar 

  35. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, Reilly JG, Chandra D, Zhou J, Claypool K, Coghlan L, Tang DG (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25(12):1696–1708

    Article  PubMed  CAS  Google Scholar 

  36. Pries R, Witrkopf N, Trenkle T, Nitsch SM, Wollenberg B (2008) Potential stem cell marker CD44 is constitutively expressed in permanent cell lines of head and neck cancer. In Vivo (Athens, Greece) 22(1):89–92

    Google Scholar 

  37. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 104(3):973–978

    Article  PubMed  CAS  Google Scholar 

  38. Rankin EB, Fuh KC, Taylor TE, Krieg AJ, Musser M, Yuan J, Wei K, Kuo CJ, Longacre TA, Giaccia AJ (2010) AXL is an essential factor and therapeutic target for metastatic ovarian cancer. Cancer Res 70(19):7570–7579

    Article  PubMed  CAS  Google Scholar 

  39. Rody A, Holtrich U, Gaetje R, Gehrmann M, Engels K, von Minckwitz G, Loibl S, Diallo-Danebrock R, Ruckhäberle E, Metzler D, Ahr A, Solbach C, Karn T, Kaufmann M (2007) Poor outcome in estrogen receptor-positive breast cancers predicted by loss of plexin B1. Clin Cancer Res 13(4):1115–1122

    Article  PubMed  CAS  Google Scholar 

  40. Rody A, Karn T, Holtrich U, Kaufmann M (2008) “Stem cell like” breast cancers-a model for the identification of new prognostic/predictive markers in endocrine responsive breast cancer exemplified by Plexin B1. Eur J Obstet Gynecol Reprod Biol 139(1):11–15

    Article  PubMed  CAS  Google Scholar 

  41. Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29(34):4741–4751

    Article  PubMed  CAS  Google Scholar 

  42. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks P (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401

    Article  PubMed  CAS  Google Scholar 

  43. Sugiura T, Miyamoto K (2008) Characterization of TRIM31, upregulated in gastric adenocarcinoma, as a novel RBCC protein. J Cell Biochem 105(4):1081–1091

    Article  PubMed  CAS  Google Scholar 

  44. Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, Gordon SA, Shimada Y, Wang TC (2009) Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 27(5):1006–1020

    Article  PubMed  CAS  Google Scholar 

  45. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 7(2):131–142

    Article  PubMed  CAS  Google Scholar 

  46. Tian K, Jurukovski V, Wang XP, Kaplan MH, Xu H (2005) Epigenetic regulation of WTH3 in primary and cultured drug-resistant breast cancer cells. Cancer Res 65(21):10024–10031

    Article  PubMed  CAS  Google Scholar 

  47. Tian K, Wang Y, Huang Y, Sun B, Li Y, Xu H (2008) Methylation of WTH3, a possible drug resistant gene, inhibits p53 regulated expression. BMC Cancer 8:327

    Article  PubMed  Google Scholar 

  48. Tusher V, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to transcriptional responses to ionizing radiation. Proc Natl Acad Sci USA 98(9):5116–5121

    Article  PubMed  CAS  Google Scholar 

  49. von Schlippe M, Marshall JF, Perry P, Stone M, Zhu AJ, Hart IR (2000) Functional interaction between E-cadherin and alphav-containing integrins in carcinoma cells. J Cell Sci 113(Pt 3):425–437

    Google Scholar 

  50. Wang A, Zeng R, Huang H (2008) Retinoic acid and sodium butyrate as cell cycle regulators in the treatment of oral squamous carcinoma cells. Oncol Res 17(4):175–182

    Article  PubMed  Google Scholar 

  51. Wang L, Zhou X, Zhou T, Ma D, Chen S, Zhi X, Yin L, Shao Z, Ou Z, Zhou P (2008) Ecto-5′-nucleotidase promotes invasion, migration and adhesion of human breast cancer cells. J Cancer Res Clin Oncol 134(3):365–372

    Article  PubMed  CAS  Google Scholar 

  52. Ye X, Li Y, Stawicki S, Couto S, Eastham-Anderson J, Kallop D, Weimer R, Wu Y, Pei L (2010) An anti-Axl monoclonal antibody attenuates xenograft tumor growth and enhances the effect of multiple anticancer therapies. Oncogene 29(38):5254–5264

    Article  PubMed  CAS  Google Scholar 

  53. Zavadil J (2010) A spotlight on regulatory networks connecting EMT and cancer stem cells. Cell Cycle 9(15):2927

    Article  PubMed  CAS  Google Scholar 

  54. Zhang P, Zhang Y, Mao L, Zhang Z, Chen W (2009) Side population in oral squamous cell carcinoma possesses tumor stem cell phenotypes. Cancer Lett 277(2):227–234

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr Zhishang Hu, Dr. Chunchun Liu, especially to Prof. Haiying Hang (from Institute of Biophysics, Chinese Academy of Sciences) who provided us with great advice and technical supports. We appreciate help from Prof. Zhi Liu (from North Carolina University, USA) for critically reading the manuscript and for comments. We thank Dr. Jiahe Zhang (First hospital, Xi’an, China) for statistics analysis. This work was supported by National Natural Science Funds of China (No. 81171490), Program for New Century Excellent Talents in University (NCET- NCET-93YXDW11000016), Program for Changjiang Scholars and Innovative Research Team in University PCSIRT:1171), Funds of Xi’an Jiaotong University 08143023 and Funds of Northwest Hospital of Xi’an Jiaotong University RC(XM)200904.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songmei Geng.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00403-017-1737-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geng, S., Guo, Y., Wang, Q. et al. Cancer stem-like cells enriched with CD29 and CD44 markers exhibit molecular characteristics with epithelial–mesenchymal transition in squamous cell carcinoma. Arch Dermatol Res 305, 35–47 (2013). https://doi.org/10.1007/s00403-012-1260-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-012-1260-2

Keywords

Navigation