Skip to main content

Advertisement

Log in

Angiogenin levels are increased in lesional skin and sera in patients with erythrodermic cutaneous T cell lymphoma

  • Short Communication
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Angiogenin is a member of the ribonuclease superfamily that is associated with the angiogenic process. Angiogenesis is regarded as an important step to support primary and metastatic tumor growth. In cutaneous T cell lymphoma (CTCL), angiogenesis in lesional skin is increased, suggesting that interaction between tumor cells and their microvasculature are likely to occur during progression of CTCL. Patients with hematological malignancies show increased serum angiogenin levels, which are related with poor overall survival. To investigate possible roles of angiogenin in development of CTCL, we measured serum angiogenin levels in 36 patients with CTCL and 21 healthy controls by enzyme-linked immunosorbent assay. We also investigated angiogenin mRNA and protein expression in lesional skin of CTCL by quantitative RT-PCR and immunohistochemistry. Serum angiogenin levels in patients with CTCL were significantly higher than those in healthy controls. When classified with types of skin lesions, serum angiogenin levels were elevated only in erythrodermic CTCL patients. Angiogenin mRNA expression levels in lesional skin were significantly elevated in erythrodermic CTCL compared to normal skin. Immunohistochemical study revealed that angiogenin was expressed by keratinocytes, endothelial cells, and infiltrating lymphocytes in CTCL. Our results suggest that enhanced angiogenin expression may be related with a poor prognosis of erythrodermic CTCL. As angiogenin acts as an inhibitor of polymorphonuclear leukocyte degranulation, angiogenin may also be linked to impaired host defense in erythrodermic CTCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

CTCL:

Cutaneous T cell lymphoma

MF:

Mycosis fungoides

mRNA:

Messenger RNA

SS:

Sézary syndrome

References

  1. Agar NS, Wedgeworth E, Crichton S, Mitchell TJ, Cox M, Ferreira S, Robson A, Calonje E, Stefanato CM, Wain EM, Wilkins B, Fields PA, Dean A, Webb K, Scarisbrick J, Morris S, Whittaker SJ (2010) Survival outcomes and prognostic factors in mycosis fungoides/Sézary syndrome: validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal. J Clin Oncol 28:4730–4739

    Article  PubMed  Google Scholar 

  2. Alexandrakis MG, Passam FH, Pappa CA, Sfiridaki K, Tsirakis G, Damilakis J, Stathopoulos EN, Kyriakou DS (2005) Relation between bone marrow angiogenesis and serum levels of angiogenin in patients with myelodysplastic syndromes. Leuk Res 29:41–46

    Article  PubMed  CAS  Google Scholar 

  3. Axelrod PI, Lorber B, Vonderheid EC (1992) Infections complicating mycosis fungoides and Sézary syndrome. JAMA 267:1354–1358

    Article  PubMed  CAS  Google Scholar 

  4. Brunner B, Gunsilius E, Schumacher P, Zwierzina H, Gastl G, Stauder R (2002) Blood levels of angiogenin and vascular endothelial growth factor are elevated in myelodysplastic syndromes and in acute myeloid leukemia. J Haematother Stem Cell Res 11:119–125

    Article  CAS  Google Scholar 

  5. Fett JW, Strydom DJ, Lobb RR, Alderman EM, Bethune JL, Riordan JF, Vallee BL (1985) Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry 24:5480–5486

    Article  PubMed  CAS  Google Scholar 

  6. Fang S, Repo H, Joensuu H, Orpana A, Salven P (2011) High serum angiogenin at diagnosis predicts for failure on long-term treatment response and for poor overall survival in non-Hodgkin lymphoma. Eur J Cancer 47:1708–1716

    Article  PubMed  CAS  Google Scholar 

  7. Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 235:442–447

    Article  PubMed  CAS  Google Scholar 

  8. Hartmann A, Kunz M, Köstlin S, Gillitzer R, Toksoy A, Bröcker EB, Klein CE (1999) Hypoxia-induced up-regulation of angiogenin in human malignant melanoma. Cancer Res 59:1578–1583

    PubMed  CAS  Google Scholar 

  9. Houge G, Døskeland SO (1996) Divergence towards a dead end? Cleavage of the divergent domains of ribosomal RNA in apoptosis. Experientia 52:963–967

    Article  PubMed  CAS  Google Scholar 

  10. Hu G, Riordan JF, Vallee BL (1994) Angiogenin promotes invasiveness of cultured endothelial cells by stimulation of cell-associated proteolytic activities. Proc Natl Acad Sci USA 91:12096–12100

    Article  PubMed  CAS  Google Scholar 

  11. Hu GF, Riordan JF (1993) Angiogenin enhances actin acceleration of plasminogen activation. Biochem Biophys Res Commun 197:682–687

    Article  PubMed  CAS  Google Scholar 

  12. Krejsgaard T, Vetter-Kauczok CS, Woetmann A, Lovato P, Labuda T, Eriksen KW, Zhang Q, Becker JC, Ødum N (2006) Jak3- and JNK-dependent vascular endothelial growth factor expression in cutaneous T-cell lymphoma. Leukemia 20:1759–1766

    Article  PubMed  CAS  Google Scholar 

  13. Lyons RM, Gentry LE, Purchio AF, Moses HL (1990) Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin. J Cell Biol 110:1361–1367

    Article  PubMed  CAS  Google Scholar 

  14. Mazur G, Woźniak Z, Wróbel T, Maj J, Kuliczkowski K (2004) Increased angiogenesis in cutaneous T-cell lymphomas. Pathol Oncol Res 10:34–36

    Article  PubMed  Google Scholar 

  15. Moenner M, Gusse M, Hatzi E, Badet J (1994) The widespread expression of angiogenin in different human cells suggests a biological function not only related to angiogenesis. Eur J Biochem 226:483–490

    Article  PubMed  CAS  Google Scholar 

  16. Musolino C, Alonci A, Bellomo G, Loteta B, Quartarone E, Gangemi D, Massara E, Calabrò L (2004) Levels of soluble angiogenin in chronic myeloid malignancies: clinical implications. Eur J Haematol 72:416–419

    Article  PubMed  CAS  Google Scholar 

  17. Rendl M, Mayer C, Weninger W, Tschachler E (2001) Topically applied lactic acid increases spontaneous secretion of vascular endothelial growth factor by human reconstructed epidermis. Br J Dermatol 145:3–9

    Article  PubMed  CAS  Google Scholar 

  18. Rybak SM, Fett JW, Yao QZ, Vallee BL (1987) Angiogenin mRNA in human tumor and normal cells. Biochem Biophys Res Commun 146:1240–1248

    Article  PubMed  CAS  Google Scholar 

  19. Sugaya M, Fang L, Cardones AR, Kakinuma T, Jaber SH, Blauvelt A, Hwang ST (2006) Oncostatin M enhances CCL21 expression by microvascular endothelial cells and increases the efficiency of dendritic cell trafficking to lymph nodes. J Immunol 177:7665–7672

    PubMed  CAS  Google Scholar 

  20. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW (2008) WHO classification of tumors of haematopoietic and lymphoid tissues, 4th edn. IARC Press, Lyon

    Google Scholar 

  21. Tello-Montoliu A, Patel JV, Lip GY (2006) Angiogenin: a review of the pathophysiology and potential clinical applications. J Thromb Haemost 4:1864–1874

    Article  PubMed  CAS  Google Scholar 

  22. Tschesche H, Kopp C, Hörl WH, Hempelmann U (1994) Inhibition of degranulation of polymorphonuclear leukocytes by angiogenin and its tryptic fragment. J Biol Chem 269:30274–30280

    PubMed  CAS  Google Scholar 

  23. Vacca A, Moretti S, Ribatti D, Pellegrino A, Pimpinelli N, Bianchi B, Bonifazi E, Ria R, Serio G, Dammacco F (1997) Progression of mycosis fungoides is associated with changes in angiogenesis and expression of the matrix metalloproteinases 2 and 9. Eur J Cancer 33:1685–1692

    Article  PubMed  CAS  Google Scholar 

  24. Verstovsek S, Kantarjian H, Aguayo A, Manshouri T, Freireich E, Keating M, Estey E, Albitar M (2001) Significance of angiogenin plasma concentrations in patients with acute myeloid leukaemia and advanced myelodysplastic syndrome. Br J Haematol 114:290–295

    Article  PubMed  CAS  Google Scholar 

  25. Vihinen P, Kallioinen M, Vuoristo MS, Ivaska J, Syrjänen KJ, Hahka-Kemppinen M, Kellokumpu-Lehtinen PL, Pyrhönen SO (2007) Serum angiogenin levels predict treatment response in patients with stage IV melanoma. Clin Exp Metastasis 24:567–574

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Tamami Kaga for technical assistance. These studies were supported by grants from the Ministry of Education, Culture, Sports and Technology.

Conflict of interest

The authors state no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Sugaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyagaki, T., Sugaya, M., Suga, H. et al. Angiogenin levels are increased in lesional skin and sera in patients with erythrodermic cutaneous T cell lymphoma. Arch Dermatol Res 304, 401–406 (2012). https://doi.org/10.1007/s00403-012-1238-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-012-1238-0

Keywords

Navigation