Skip to main content

Advertisement

Log in

Ichthyin/NIPAL4 localizes to keratins and desmosomes in epidermis and Ichthyin mutations affect epidermal lipid metabolism

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Autosomal recessive congenital ichthyosis (ARCI) is a group of disorders characterized by abnormal desquamation of the skin and a disrupted epidermal water barrier. Ichthyin/NIPAL4 gene mutations have been identified in a subgroup of ARCI patients, but the role of ichthyin in epidermis remains elusive. In order to obtain new insights concerning the characteristics of ichthyin and the ARCI pathogenesis, we studied the expression and localization of ichthyin and related epidermal components in cultured keratinocytes and skin sections from patients with Ichthyin mutations and healthy controls. We observed an up-regulation of Ichthyin mRNA levels after in vitro differentiation of keratinocytes from both a patient with Ichthyin mutations and controls. Confocal and electron microscopy analyses of immunolabeled skin sections revealed that ichthyin localizes to desmosomes and keratins in both patients with mutant Ichthyin and controls, with an increased immunolabeling in patients. Nile red lipid analysis of skin sections exposed intra-cellular lipid accumulations in cells of the granular and cornified layers in patients but not in controls, consistent with the pathognomonic lipid membrane structures previously identified in epidermis from patients. Our combined findings indicate that ichthyin is associated with keratins and desmosomes in epidermis and is involved in lipid metabolism, possibly through processing of lamellar bodies. These results provide new clues to the understanding of the epidermal water barrier and the pathogenesis in ARCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akiyama M, Shimizu H (2008) An update on molecular aspects of the non-syndromic ichthyoses. Exp Dermatol 17(5):373–382

    Article  PubMed  CAS  Google Scholar 

  2. Armstrong DK, McKenna KE, Purkis PE, Green KJ, Eady RA, Leigh IM, Hughes AE (1999) Haploinsufficiency of desmoplakin causes a striate subtype of palmoplantar keratoderma. Hum Mol Genet 8(1):143–148

    Article  PubMed  CAS  Google Scholar 

  3. Badhai J, Frojmark AS, Razzaghian HR, Davey E, Schuster J, Dahl N (2009) Posttranscriptional down-regulation of small ribosomal subunit proteins correlates with reduction of 18S rRNA in RPS19 deficiency. FEBS Lett 583(12):2049–2053

    Article  PubMed  CAS  Google Scholar 

  4. Bornslaeger EA, Corcoran CM, Stappenbeck TS, Green KJ (1996) Breaking the connection: displacement of the desmosomal plaque protein desmoplakin from cell–cell interfaces disrupts anchorage of intermediate filament bundles and alters intercellular junction assembly. J Cell Biol 134(4):985–1001

    Article  PubMed  CAS  Google Scholar 

  5. Cheng J, Syder AJ, Yu QC, Letai A, Paller AS, Fuchs E (1992) The genetic basis of epidermolytic hyperkeratosis: a disorder of differentiation-specific epidermal keratin genes. Cell 70(5):811–819

    Article  PubMed  CAS  Google Scholar 

  6. Chipev CC, Korge BP, Markova N, Bale SJ, DiGiovanna JJ, Compton JG, Steinert PM (1992) A leucine—proline mutation in the H1 subdomain of keratin 1 causes epidermolytic hyperkeratosis. Cell 70(5):821–828

    Article  PubMed  CAS  Google Scholar 

  7. Dahlqvist J, Klar J, Hausser I, Anton-Lamprecht I, Pigg MH, Gedde-Dahl T Jr, Ganemo A, Vahlquist A, Dahl N (2007) Congenital ichthyosis: mutations in ichthyin are associated with specific structural abnormalities in the granular layer of epidermis. J Med Genet 44(10):615–620

    Article  PubMed  CAS  Google Scholar 

  8. Dahlqvist J, Klar J, Tiwari N, Schuster J, Torma H, Badhai J, Pujol R, van Steensel MA, Brinkhuizen T, Gijezen L, Chaves A, Tadini G, Vahlquist A, Dahl N (2010) A single-nucleotide deletion in the POMP 5’ UTR causes a transcriptional switch and altered epidermal proteasome distribution in KLICK genodermatosis. Am J Hum Genet 86(4):596–603

    Article  PubMed  CAS  Google Scholar 

  9. Elias PM, Williams ML, Holleran WM, Jiang YJ, Schmuth M (2008) Pathogenesis of permeability barrier abnormalities in the ichthyoses: inherited disorders of lipid metabolism. J Lipid Res 49(4):697–714

    Article  PubMed  CAS  Google Scholar 

  10. Epp N, Furstenberger G, Muller K, de Juanes S, Leitges M, Hausser I, Thieme F, Liebisch G, Schmitz G, Krieg P (2007) 12R-lipoxygenase deficiency disrupts epidermal barrier function. J Cell Biol 177(1):173–182

    Article  PubMed  CAS  Google Scholar 

  11. Fuchs E, Green H (1980) Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell 19(4):1033–1042

    Article  PubMed  CAS  Google Scholar 

  12. Goytain A, Hines RM, Quamme GA (2008) Functional characterization of NIPA2, a selective Mg2+ transporter. Am J Physiol Cell Physiol 295(4):C944–C953

    Article  PubMed  CAS  Google Scholar 

  13. Huber M, Rettler I, Bernasconi K, Frenk E, Lavrijsen SP, Ponec M, Bon A, Lautenschlager S, Schorderet DF, Hohl D (1995) Mutations of keratinocyte transglutaminase in lamellar ichthyosis. Science 267(5197):525–528

    Article  PubMed  CAS  Google Scholar 

  14. Jobard F, Lefevre C, Karaduman A, Blanchet-Bardon C, Emre S, Weissenbach J, Ozguc M, Lathrop M, Prud’homme JF, Fischer J (2002) Lipoxygenase-3 (ALOXE3) and 12(R)-lipoxygenase (ALOX12B) are mutated in non-bullous congenital ichthyosiform erythroderma (NCIE) linked to chromosome 17p13.1. Hum Mol Genet 11(1):107–113

    Article  PubMed  CAS  Google Scholar 

  15. Klar J, Schweiger M, Zimmerman R, Zechner R, Li H, Torma H, Vahlquist A, Bouadjar B, Dahl N, Fischer J (2009) Mutations in the fatty acid transport protein 4 gene cause the ichthyosis prematurity syndrome. Am J Hum Genet 85(2):248–253

    Article  PubMed  CAS  Google Scholar 

  16. Lefevre C, Audebert S, Jobard F, Bouadjar B, Lakhdar H, Boughdene-Stambouli O, Blanchet-Bardon C, Heilig R, Foglio M, Weissenbach J, Lathrop M, Prud’homme JF, Fischer J (2003) Mutations in the transporter ABCA12 are associated with lamellar ichthyosis type 2. Hum Mol Genet 12(18):2369–2378

    Article  PubMed  CAS  Google Scholar 

  17. Lefevre C, Bouadjar B, Ferrand V, Tadini G, Megarbane A, Lathrop M, Prud’homme JF, Fischer J (2006) Mutations in a new cytochrome P450 gene in lamellar ichthyosis type 3. Hum Mol Genet 15(5):767–776

    Article  PubMed  CAS  Google Scholar 

  18. Lefevre C, Bouadjar B, Karaduman A, Jobard F, Saker S, Ozguc M, Lathrop M, Prud’homme JF, Fischer J (2004) Mutations in ichthyin a new gene on chromosome 5q33 in a new form of autosomal recessive congenital ichthyosis. Hum Mol Genet 13(20):2473–2482

    Article  PubMed  CAS  Google Scholar 

  19. Melin M, Klar J Jr, Gedde-Dahl T, Fredriksson R, Hausser I, Brandrup F, Bygum A, Vahlquist A, Hellstrom Pigg M, Dahl N (2006) A founder mutation for ichthyosis prematurity syndrome restricted to 76 kb by haplotype association. J Hum Genet 51(10):864–871

    Article  PubMed  CAS  Google Scholar 

  20. Meusser B, Hirsch C, Jarosch E, Sommer T (2005) ERAD: the long road to destruction. Nat Cell Biol 7(8):766–772

    Article  PubMed  CAS  Google Scholar 

  21. Mizutani Y, Mitsutake S, Tsuji K, Kihara A, Igarashi Y (2009) Ceramide biosynthesis in keratinocyte and its role in skin function. Biochimie 91(6):784–790

    Article  PubMed  CAS  Google Scholar 

  22. Nemes Z, Marekov LN, Fesus L, Steinert PM (1999) A novel function for transglutaminase 1: attachment of long-chain omega-hydroxyceramides to involucrin by ester bond formation. Proc Natl Acad Sci USA 96(15):8402–8407

    Article  PubMed  CAS  Google Scholar 

  23. Norgett EE, Hatsell SJ, Carvajal-Huerta L, Cabezas JC, Common J, Purkis PE, Whittock N, Leigh IM, Stevens HP, Kelsell DP (2000) Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet 9(18):2761–2766

    Article  PubMed  CAS  Google Scholar 

  24. O’Shaughnessy RF, Choudhary I, Harper JI (2010) Interleukin-1 alpha blockade prevents hyperkeratosis in an in vitro model of lamellar ichthyosis. Hum Mol Genet 19(13):2594–2605

    Article  PubMed  Google Scholar 

  25. Oji V, Tadini G, Akiyama M, Blanchet Bardon C, Bodemer C, Bourrat E, Coudiere P, DiGiovanna JJ, Elias P, Fischer J, Fleckman P, Gina M, Harper J, Hashimoto T, Hausser I, Hennies HC, Hohl D, Hovnanian A, Ishida-Yamamoto A, Jacyk WK, Leachman S, Leigh I, Mazereeuw-Hautier J, Milstone L, Morice-Picard F, Paller AS, Richard G, Schmuth M, Shimizu H, Sprecher E, Van Steensel M, Taieb A, Toro JR, Vabres P, Vahlquist A, Williams M, Traupe H (2010) Revised nomenclature and classification of inherited ichthyoses: results of the first ichthyosis consensus conference in Soreze 2009. J Am Acad Dermatol 63(4):607–641

    Google Scholar 

  26. Radoja N, Gazel A, Banno T, Yano S, Blumenberg M (2006) Transcriptional profiling of epidermal differentiation. Physiol Genomics 27(1):65–78

    Article  PubMed  CAS  Google Scholar 

  27. Rickman L, Simrak D, Stevens HP, Hunt DM, King IA, Bryant SP, Eady RA, Leigh IM, Arnemann J, Magee AI, Kelsell DP, Buxton RS (1999) N-terminal deletion in a desmosomal cadherin causes the autosomal dominant skin disease striate palmoplantar keratoderma. Hum Mol Genet 8(6):971–976

    Article  PubMed  CAS  Google Scholar 

  28. Rothnagel JA, Dominey AM, Dempsey LD, Longley MA, Greenhalgh DA, Gagne TA, Huber M, Frenk E, Hohl D, Roop DR (1992) Mutations in the rod domains of keratins 1 and 10 in epidermolytic hyperkeratosis. Science 257(5073):1128–1130

    Article  PubMed  CAS  Google Scholar 

  29. Russell LJ, DiGiovanna JJ, Rogers GR, Steinert PM, Hashem N, Compton JG, Bale SJ (1995) Mutations in the gene for transglutaminase 1 in autosomal recessive lamellar ichthyosis. Nat Genet 9(3):279–283

    Article  PubMed  CAS  Google Scholar 

  30. Schmuth M, Yosipovitch G, Williams ML, Weber F, Hintner H, Ortiz-Urda S, Rappersberger K, Crumrine D, Feingold KR, Elias PM (2001) Pathogenesis of the permeability barrier abnormality in epidermolytic hyperkeratosis. J Invest Dermatol 117(4):837–847

    Article  PubMed  CAS  Google Scholar 

  31. Smyth I, Hacking DF, Hilton AA, Mukhamedova N, Meikle PJ, Ellis S, Satterley K, Collinge JE, de Graaf CA, Bahlo M, Sviridov D, Kile BT, Hilton DJ (2008) A mouse model of harlequin ichthyosis delineates a key role for Abca12 in lipid homeostasis. PLoS Genet 4(9):e1000192

    Article  PubMed  Google Scholar 

  32. Thomas AC, Tattersall D, Norgett EE, O’Toole EA, Kelsell DP (2009) Premature terminal differentiation and a reduction in specific proteases associated with loss of ABCA12 in Harlequin ichthyosis. Am J Pathol 174(3):970–978

    Article  PubMed  CAS  Google Scholar 

  33. Wajid M, Kurban M, Shimomura Y, Christiano AM (2010) NIPAL4/ichthyin is expressed in the granular layer of human epidermis and mutated in two Pakistani families with autosomal recessive ichthyosis. Dermatology 220(1):8–14

    Article  PubMed  CAS  Google Scholar 

  34. Williams ML, Elias PM (1985) Heterogeneity in autosomal recessive ichthyosis. Clinical and biochemical differentiation of lamellar ichthyosis and nonbullous congenital ichthyosiform erythroderma. Arch Dermatol 121(4):477–488

    Article  PubMed  CAS  Google Scholar 

  35. Zuo Y, Zhuang DZ, Han R, Isaac G, Tobin JJ, McKee M, Welti R, Brissette JL, Fitzgerald ML, Freeman MW (2008) ABCA12 maintains the epidermal lipid permeability barrier by facilitating formation of ceramide linoleic esters. J Biol Chem 283(52):36624–36635

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Hans Törmä and Dr Casimiro Castillejo-Lopez for fruitful discussions and for providing antibodies and Dr Ingrid Hausser for valuable comments. We acknowledge Inger Pihl-Lundin for immunohistochemical work and Hao Li for technical support. This work was supported by the Swedish Research Council (K2010-66X-10829-17-3 to N.D. and K2010-55X-20326-04-03 to G.T.W.), Uppsala University, Science for Life Laboratory and Uppsala University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niklas Dahl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 11268 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahlqvist, J., Westermark, G.T., Vahlquist, A. et al. Ichthyin/NIPAL4 localizes to keratins and desmosomes in epidermis and Ichthyin mutations affect epidermal lipid metabolism. Arch Dermatol Res 304, 377–386 (2012). https://doi.org/10.1007/s00403-012-1207-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-012-1207-7

Keywords

Navigation