Skip to main content

Advertisement

Log in

Increased cutaneous oxygen availability by topical application of hydrogen peroxide cream enhances the photodynamic reaction to topical 5-aminolevulinic acid-methyl ester

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Topical 5-aminolevulinic acid (ALA) and methyl aminolevulinate (MAL) photodynamic therapy (PDT) of skin lesions is an accepted treatment for skin tumours but success rates need improvement. The effectiveness of PDT is influenced by availability of oxygen. The aim of this study was to demonstrate, in normal skin, whether a decrease in skin oxygen tension reduces the photodynamic reaction (PDR); and whether the addition of topical hydrogen peroxide can reverse the effect. Topical MAL and red light were administered to the inner forearms of 40 healthy volunteers. Skin oxygen availability was lowered during the illumination phase of the PDT, by applying blanching pressure with a plastic slide. Topical hydrogen peroxide was applied under the pressure slide, immediately prior to illumination, to reverse the effect. Erythema was assessed by naked eye and laser Doppler perfusion imaging (LDPI), at baseline and at 1, 5, 24 and 48 h following illumination. Decreasing oxygen availability by pressure altered the PDR with a larger number of subjects (17.5%) not demonstrating any visible erythema at any time point after plastic slide pressure compared to a PDR Control site (7.5%). The addition of topical hydrogen peroxide during pressure application, restored the number of subjects showing no visible erythema compared to that of PDR Control. LDPI data showed that there was a decrease in mean perfusion after plastic slide pressure when comparing the change from baseline to 24 h (P < 0.05) with the PDR Control. The addition of hydrogen peroxide not only restored but also increased the mean perfusion compared to that of PDR Control when comparing the change from baseline to 5 h and the change from baseline to 24 h (P < 0.001). Increasing oxygen availability increased the PDR in normal skin. The possibility that addition of topical hydrogen peroxide to PDT protocols for non-melanoma skin cancer may increase reactivity and, thus, be relevant for outcomes warrants further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anand S, Honari G, Hasan T et al (2009) Low-dose methotrexate enhances aminolevulinate-based photodynamic therapy in skin carcinoma cells in vitro and in vivo. Clin Cancer Res 15(10):3333–3343

    Article  PubMed  CAS  Google Scholar 

  2. Anholt H, Peng Q, Moan J (1994) Pressure against the tumour can reduce the efficiency of photochemistry. Cancer Lett 82(1):73–80

    Article  PubMed  CAS  Google Scholar 

  3. Babilas P, Schremi S, Landthaler M, Szeimies R-M (2010) Photodynamic therapy in dermatology: state-of-the-art. Photodermatol Photoimmunol Photomed 26:118–132

    Article  PubMed  CAS  Google Scholar 

  4. Belcaro G, Cesarone MR, Nicolaides AN et al (2003) Improvement of microcirculation and healing of venous hypertension and ulcers with crystacide. Evaluation of free radicals, laser doppler flux and PO2. A prospective-randomized-controlled study. Angiology 54(3):325–330

    Article  PubMed  CAS  Google Scholar 

  5. Braathen LR, Szeimies R-M, Basset-Seguin N et al (2007) Guidelines on the use of photodynamic therapy for nonmelanoma skin cancer: an international consensus. J Am Acad Dermatol 56:125–143

    Article  PubMed  Google Scholar 

  6. Brooke RC, Sinha A, Sidhu MK et al (2006) Histamine is released following aminolevulinic acid-photodynamic therapy of human skin and mediates an aminolevulinic acid dose-related immediate inflammatory response. J Invest Dermatol 126:2296–2301

    Article  PubMed  CAS  Google Scholar 

  7. Campbell SM, Morton CA, Alyahya R et al (2008) Clinical investigation of the novel iron-chelating agent, CP94, to enhance topical photodynamic therapy of nodular basal cell carcinoma. Br J Dermatol 159:387–393

    Article  PubMed  CAS  Google Scholar 

  8. Chen Q, Huang Z, Chen H et al (2002) Improvement of tumour response by manipulation of tumour oxygenation during photodynamic therapy. Photochem Photobiol 76(2):197–203

    Article  PubMed  CAS  Google Scholar 

  9. Christensen OB (1993) Expert report on the clinical documentation LHP cream 1%. Department of Dermatology, General Hospital, Malmo, pp 127–174

  10. Clark C, Dawe RS, Moseley H et al (2004) The characteristics of erythema induced by topical 5-aminolevulinic acid photodynamic therapy. Photodermatol Photoimmunol Photomed 20:105–107

    Article  PubMed  CAS  Google Scholar 

  11. Colin D, Saumet J (1996) Influence of external pressure on tranxcutaneous oxygen tension and laser Doppler flowmetry on sacral skin. Clin Physiol 16:61–72

    Article  PubMed  CAS  Google Scholar 

  12. Foster TH, Hartley DF, Nichols MG et al (1993) Fluence rate effects in photodynamic therapy of multicell tumour spheroids. Cancer Res 53:1249–1254

    PubMed  CAS  Google Scholar 

  13. Fuchs JJT (1998) The role of oxygen in cutaneous photodynamic therapy. Free Radic Biol Med 24(5):835–847

    Article  PubMed  CAS  Google Scholar 

  14. Gille JJP, Joenje H (1992) Cell culture models for oxidative stress: superoxide and hydrogen peroxide versus normobaric hyperoxia. Mutat Res 275:405–414

    PubMed  CAS  Google Scholar 

  15. Henderson BW, Dougherty TJ (1992) How does photodynamic therapy work? Photochem Photobiol 55(1):145–157

    Article  PubMed  CAS  Google Scholar 

  16. Henderson BW, Fingar VH (1987) Relationship of tumour hypoxia and response to photodynamic treatment in an experimental mouse tumour. Cancer Res 47:3110–3114

    PubMed  CAS  Google Scholar 

  17. Horn M, Wolf P, Wulf HC et al (2003) Topical methyl aminolevulinate photodynamic therapy in patients with basal cell carcinoma prone to complications and poor cosmetic outcome with conventional treatment. Br J Dermatol 149(6):1242–1249

    Article  PubMed  CAS  Google Scholar 

  18. Ishida N, Watanabe D, Akita Y et al (2008) Etretinate enhances the susceptibility of human skin squamous cell carcinoma cells to 5-aminolaevulic acid-based photodynamic therapy. Clin Exp Dermatol 34:385–389

    Article  PubMed  Google Scholar 

  19. Jirsa JM, Pouckova P, Dolezal J et al (1991) Hyperbaric oxygen and photodynamic therapy in tumour-bearing nude mice. Eur J Cancer 27(1):109

    Article  PubMed  Google Scholar 

  20. Junod AF, Clement A, Jornot L et al (1985) Differential effects of hyperoxia and hydrogen peroxide on thymidine kinase and adenosine kinase activities of cultured endothelial cells. Biochim Biophy Acta 847:20–24

    Article  CAS  Google Scholar 

  21. Kaae J, Philipsen PA, Haedersdal M, Wulf HC (2008) Immediate whealing in red light exposed areas during photodynamic therapy. Acta Derm Venereol 88:480–483

    Article  PubMed  Google Scholar 

  22. Kalka K, Merk H, Mukhtar H (2000) Photodynamic therapy in dermatology. J Am Acad Dermatol 42:389–413

    Article  PubMed  CAS  Google Scholar 

  23. Kennedy JC, Pottier RH, Pross DC (1990) Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol B 6:143–148

    Article  PubMed  CAS  Google Scholar 

  24. Kurwa HA, Barlow RJ (1999) The role of photodynamic therapy in dermatology. Clin Exp Dermatol 24:143–148

    Article  PubMed  CAS  Google Scholar 

  25. Leahy MJ, Enfield JG, Clancy NT et al (2007) Biophotonic methods in microcirculation imaging. Med Laser Appl 22:105–126

    Article  Google Scholar 

  26. Lee See K, Forbes IJ, Betts WH (1984) Oxygen dependency of phototoxicity with haematoporphyrin derivative. Photochem Photobiol 39(5):631–634

    Article  PubMed  CAS  Google Scholar 

  27. Maier A, Tomaselli F, Anegg U et al (2000) Combined photodynamic therapy and hyperbaric oxygenation in carcinoma of the oesophagus and the oesophago-gastric junction. Eur J Cardiothorac Surg 18:649–655

    Article  PubMed  CAS  Google Scholar 

  28. Manifold RN (2003) The photodynamic reaction to aminolevulinic acid-methyl ester in normal skin. Master of Science Thesis, University of New South Wales, Sydney

  29. Mitchell JB, McPherson S, DeGraff W et al (1985) Oxygen dependence of haematoporphyrin derivative-induced photoinactivation of Chinese hamster cells. Cancer Res 45:2008–2011

    PubMed  CAS  Google Scholar 

  30. Morton CA (2004) Photodynamic therapy for nonmelanoma skin cancer-and more? Arch Dermatol 140:116–120

    Article  PubMed  CAS  Google Scholar 

  31. Morton CA, McKenna KE, Rhodes LE (2008) Guidelines for topical photodynamic therapy: update. Br J Dermatol 159:1245–1266

    Article  PubMed  CAS  Google Scholar 

  32. Morton CA, Whitehurst C, McColl JH et al (2001) Photodynamic therapy for large or multiple patches of Bowen disease and basal cell carcinoma. Arch Dermatol 137(3):319–324

    PubMed  CAS  Google Scholar 

  33. Murrant CL, Andrade FH, Reid MB (1999) Exogenous reactive oxygen and nitric oxide alter intracellular oxidant status of skeletal muscle fibres. Acta Physiol Scand 166:111–121

    Article  PubMed  CAS  Google Scholar 

  34. O’Doherty J, Henricson J, Anderson C et al (2007) Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation. Skin Res Technol 13:472–484

    Article  PubMed  Google Scholar 

  35. O’Doherty J, Henricson J, Enfield J, Nilsson GE, Leahy MJ, Anderson CD (2010) Tissue viability imaging (TiVi) in the assessment of divergent beam UV-B provocation. Arch Dermatol Res. doi:10.1007/s00403-010-1055-2

  36. Rhodes LE, de Rie MA, Enstrom Y et al (2004) Photodynamic therapy using topical methyl aminolevulinate vs surgery for nodular basal cell carcinoma: results of a multicentre randomised prospective trial. Arch Dermatol 140(1):17–23

    Article  PubMed  CAS  Google Scholar 

  37. Rhodes LE, de Rie MA, Leifsdottir R et al (2007) Five-year follow-up of a randomised, prospective trial of topical methyl aminolevulinate photodynamic therapy vs surgery for nodular basal cell carcinoma. Arch Dermatol 143(9):1131–1136

    Article  PubMed  CAS  Google Scholar 

  38. Sandberg C, Stenquist B, Rosdahl I et al (2006) Important factors for pain during photodynamic therapy for actinic keratosis. Acta Derm Venereol 86:404–408

    Article  PubMed  Google Scholar 

  39. Sitnik TM, Hampton JA, Henderson BW (1998) Reduction of tumour oxygenation during and after photodynamic therapy in vivo: effects of fluence rate. Br J Cancer 77(9):1386–1394

    Article  PubMed  CAS  Google Scholar 

  40. Tegner E, Rorsman H, Rosengren E (1983) 5-S-Cysteinyldopa and pigment response to UVA light. Acta Derm Venereol 63:21–25

    PubMed  CAS  Google Scholar 

  41. Thissen MR, de Blois MW, Robinson DJ et al (2002) PpIX fluorescence kinetics and increased skin damage after intracutaneous injection of 5-aminolevulinic acid and repeated illumination. J Invest Dermatol 118(2):239–245

    Article  PubMed  CAS  Google Scholar 

  42. Tomaselli F, Maier A, Sankin O et al (2001) Acute effects of combined photodynamic therapy and hyperbaric oxygenation in lung cancer—a clinical pilot study. Lasers Surg Med 28:399–403

    Article  PubMed  CAS  Google Scholar 

  43. Wårdell K, Jakobsson A, Nisson GE (1993) Laser Doppler perfusion imaging by dynamic light scattering. IEEE Trans Biomed Eng 40:309–316

    Article  PubMed  Google Scholar 

  44. Weishaupt KR, Gomer CJ, Dougherty TJ (1976) Identification of singlet oxygen as the cytotoxic agent in photo-inactivation of a murine tumour. Cancer Res 36:2326–2329

    PubMed  CAS  Google Scholar 

  45. White DC, Teasdale PR (1966) The oxygenation of blood by hydrogen peroxide: in vitro studies. Br J Anaesth 38:339–344

    Article  PubMed  CAS  Google Scholar 

  46. Wiegell S, Stender I-M, Na R et al (2003) Pain associated with photodynamic therapy using 5-Aminolevulinic Acid or 5-aminolevulinic acid methyl-ester on tape-stripped normal skin. Arch Dermatol 139(9):1173–1177

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Karin Wårdell, Dr Michail Ilias (Department of Biomedical Engineering, Linköping University), Ms Marieta Hardy, Ms Hilde Morris (Photocure ASA) and Mr John Bacon (Bioglan AB) for their assistance. The support of the staff of the Department of Dermatology, Liverpool hospital as well as that of Dr Cathy Reid and the staff of the Department of Dermatology, Royal Adelaide Hospital is also acknowledged. The work was financially supported by the University of New South Wales scholarship fund.

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Manifold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manifold, R.N., Anderson, C.D. Increased cutaneous oxygen availability by topical application of hydrogen peroxide cream enhances the photodynamic reaction to topical 5-aminolevulinic acid-methyl ester. Arch Dermatol Res 303, 285–292 (2011). https://doi.org/10.1007/s00403-011-1128-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-011-1128-x

Keywords

Navigation