Skip to main content

Advertisement

Log in

Integration of Langerhans-like cells into a human skin equivalent

  • Short Communication
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Studies regarding cellular interactions between Langerhans cells and other skin cells are somehow hampered by the difficult cultivation of these cells in vitro. Here, we show that the human MUTZ-3 cell line can be differentiated into Langerhans-like cells in the presence of a cytokine cocktail including GM-CSF, TGF-β1 and TNF-α. We used the expression of langerin, CD1a, CCR6 and the intracellular presence of Birbeck granules to identify the differentiated MUTZ-3 cells (MUTZ-3-LCs). The aim of this study was to integrate MUTZ-3-LCs into a three-dimensional full-thickness skin model. On top of fibroblast-containing collagen matrix a mixture of primary human keratinocytes and MUTZ-3-LCs were seeded and cultured for 24 h. Subsequently, the models were lifted up to the air-liquid interface. Histological evaluation featured a fully stratified epidermis with all characteristic epidermal strata. Langerin-positive cells were detected suprabasally within the epidermis indicating that keratinocytes provide environmental conditions for long-time maintenance of MUTZ-3-LCs. These skin models provide a tool to further investigate the interactions between Langerhans-like cells and other skin cells and particularly learn more about the cutaneous immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Birbeck MS, Breathnach AS, Everall JD (1961) An electron microscope study of basal melanocytes and high-level clear cells (Langerhans cells) in vitiligo. J Invest Dermatol 37:51

    Article  Google Scholar 

  2. Borkowski TA, Letterio JJ, Farr AG, Udey MC (1996) A role for endogenous transforming growth factor β1 in Langerhans cell biology: the skin of transforming growth factor β1 null mice is devoid of epidermal Langerhans cells. J Exp Med 184:2417–2422

    Article  CAS  PubMed  Google Scholar 

  3. Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J (1992) GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature 360:258–261

    Article  CAS  PubMed  Google Scholar 

  4. Charbonnier AS, Kohrgruber N, Kriehuber E, Stingl G, Rot A, Maurer D (1999) Macrophage inflammatory protein 3α is involved in the constitutive trafficking of epidermal Langerhans cells. J Exp Med 190:1755–1768

    Article  CAS  PubMed  Google Scholar 

  5. Cumberbatch M, Dearman RJ, Griffiths CE, Kimber I (2000) Langerhans cell migration. Clin Exp Dermatol 25:413–418

    Article  CAS  PubMed  Google Scholar 

  6. Geissmann F, Prost C, Monnet JP, Dy M, Brousse N, Hermine O (1998) Transforming growth factor b1 in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells. J Exp Med 187:961–966

    Article  CAS  PubMed  Google Scholar 

  7. Kaplan DH, Li MO, Jenison MC, Shlomchik WD, Flavell RA, Shlomchik MJ (2007) Autocrine/paracrine TGFbeta1 is required for the development of epidermal Langerhans cells. J Exp Med 204:2545–2552

    Article  CAS  PubMed  Google Scholar 

  8. Kripke ML, Munn CG, Jeevan A, Tang JM, Bucana C (1990) Evidence that cutaneous antigen-presenting cells migrate to regional lymph nodes during contact sensitization. J Immunol 145:2833–2838

    CAS  PubMed  Google Scholar 

  9. Masterson AJ, Sombroek CC, de Gruijl TD, Graus YM, van der Vliet H, Lougheed SM, van den Eertwegh AJ, Pinedo HM, Scheper RJ (2002) MUTZ-3, a human cell line model for the cytokine-induced differentiation of dendritic cells from CD34+ precursors. Blood 100:701–703

    Article  CAS  PubMed  Google Scholar 

  10. Mewes KR, Raus M, Bernd A, Zöller NN, Sättler A, Graf R (2007) Elastin expression in a newly developed full-thickness skin equivalent. Skin Pharmacol Physiol 20:85–95

    Article  CAS  PubMed  Google Scholar 

  11. Pruniéras M, Regnier M, Woodley D (1983) Methods for cultivation of keratinocytes with an air-liquid interface. J Invest Dermatol 81:28s–33s

    Article  PubMed  Google Scholar 

  12. Reid CD, Stackpoole A, Meager A, Tikerpae J (1992) Interactions of tumor necrosis factor with granulocyte-macrophage colony-stimulating factor and other cytokines in the regulation of dendritic cell growth in vitro from early bipotent CD34+ progenitors in human bone marrow. J Immunol 149:2681–2688

    CAS  PubMed  Google Scholar 

  13. Romani N, Holzmann S, Tripp CH, Koch F, Stoitzner PS (2003) Langerhans cells-dendritic cells of the epidermis. APMIS 111:725–740

    Article  CAS  PubMed  Google Scholar 

  14. Rosdy M, Clauss LC (1990) Terminal epidermal differentiation of human keratinocytes grown in chemically defined medium on inert filter substrates at the air-liquid interface. J Invest Dermatol 95:409–414

    Article  CAS  PubMed  Google Scholar 

  15. Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179:1109–1118

    Article  CAS  PubMed  Google Scholar 

  16. Santegoets SJ, Masterson AJ, van der Sluis PC, Lougheed SM, Fluitsma DM, van den Eertwegh AJ, Pinedo HM, Scheper RJ, de Gruijl TD (2006) A CD34+ human cell line model of myeloid dendritic cell differentiation: evidence for a CD14+CD11b+ Langerhans cell precursor. J Leukoc Biol 80:1337–1344

    Article  CAS  PubMed  Google Scholar 

  17. Strunk D, Egger C, Leitner G et al (1997) A skin homing molecule defines the Langerhans cell progenitor in human peripheral blood. J Exp Med 185:1131–1136

    Article  CAS  PubMed  Google Scholar 

  18. Valladeau J, Clair-Moninot V, Dezutter-Dambuyant C et al (2002) Identification of mouse langerin/CD207 in Langerhans cells and some dendritic cells of lymphoid tissues. J Immunol 168:782–792

    CAS  PubMed  Google Scholar 

  19. Wolff K (1967) The fine structure of the Langerhans cell granule. J Cell Biol 35:468–473

    Article  CAS  PubMed  Google Scholar 

  20. Zöller NN, Kippenberger S, Thaçi D, Mewes K, Spiegel M, Sättler A, Schultz M, Bereiter-Hahn J, Kaufmann R, Bernd A (2008) Evaluation of beneficial and adverse effects of glucocorticoids on a newly developed full-thickness skin model. Toxicol In Vitro 22:747–759

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Karsten Mewes and Dr. Lars Vierkotten (Henkel AG & Co. KGaA, Düsseldorf, Germany) for helping us making the collagen matrix. We also thank Dr. Stefan Gfrörer (Paediatric Surgery, University Hospital, Frankfurt/Main, Germany) for providing the foreskin biopsies. This work was in part supported by the Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF; grant-no: 0315018A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to August Bernd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laubach, V., Zöller, N., Rossberg, M. et al. Integration of Langerhans-like cells into a human skin equivalent. Arch Dermatol Res 303, 135–139 (2011). https://doi.org/10.1007/s00403-010-1092-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-010-1092-x

Keywords

Navigation