Skip to main content

Advertisement

Log in

Sidestream dark field imaging: the evolution of real-time visualization of cutaneous microcirculation and its potential application in dermatology

  • Mini Review
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Technological advances during the last years have enhanced the image quality of the microcirculation. Intravital microscopy (IM) has been considered the “gold standard” for many years, but it can be used mostly in anesthetized animals which is a disadvantage. The nailfold videocapillaroscopy, a non-invasive examination that includes a microscope with an epiillumination system, came afterward, but its major disadvantage is the restricted area available for investigation namely the nailfold capillary bed. The orthogonal polarization spectral (OPS) imaging technique, where reflected light allows the visualization of the microcirculation, was the next non-invasive exam, but it still presents some drawbacks such as suboptimal capillary visualization and image blurring due to red blood cell movements. Excessive probe pressure modifies red blood cell velocity. There is suboptimal imaging of capillaries due to motion-induced image blurring by movements of OPS device, tissue and/or flowing red blood cells. Sidestream dark field (SDF) imaging is the newest tool for microcirculatory research. Illumination is provided by concentrically placed light-emitting diodes to avoid image blurring and to enhance image contrast. It represents a simple and non-invasive imaging technique, with low cost, good portability and high sensitivity that provides fine, well-defined images. In addition, the microcirculation can be studied through laser Doppler flowmetry (LDF) or reflectance-mode confocal-laser-scanning microscopy (RCLM). However, LDF cannot show microcirculatory vessels and high cost of RCLM can be an inconvenience. New applications of SDF technique could include skin microcirculatory evaluation and allow dermatological studies on psoriasis, skin tumors and leprosy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Altintas MA, Altintas AA, Guggenheim M et al (2010) Insight in human skin microcirculation using in vivo reflectance-mode confocal laser scanning microscopy. J Digit Imaging 23:475–481

    Article  PubMed  Google Scholar 

  2. Altintas MA, Meyer-Marcotty M, Altintas AA et al (2009) In vivo reflectance-mode confocal microscopy provides insights in human skin microcirculation and histomorphology. Comput Med Imaging Graph 33:532–536

    Article  CAS  PubMed  Google Scholar 

  3. Argenziano G, Zalaudek I, Corona R et al (2004) Vascular structures in skin tumors: a dermoscopy study. Arch Dermatol 140:1485–1489

    Article  PubMed  Google Scholar 

  4. Braverman IM (2000) The cutaneous microcirculation. J Investig Dermatol Symp Proc 5:3–9

    Article  CAS  PubMed  Google Scholar 

  5. Carpentier PH (2001) Current techniques for the clinical evaluation of the microcirculation. J Mal Vasc 26:142–147

    CAS  PubMed  Google Scholar 

  6. Cerny V, Turek Z, Parizkova R (2007) Orthogonal polarization spectral imaging. Physiol Res 56:141–147

    CAS  PubMed  Google Scholar 

  7. Coelho da Mota DS, Furtado E, Bottino DA et al (2009) Effects of buflomedil and pentoxifylline on hamster skin-flap microcirculation: prediction of flap viability using orthogonal polarization spectral imaging. Clinics (Sao Paulo) 64:797–802

    Google Scholar 

  8. Cracowski JL, Minson CT, Salvat-Melis M et al (2006) Methodological issues in the assessment of skin microvascular endothelial function in humans. Trends Pharmacol Sci 27:503–508

    Article  CAS  PubMed  Google Scholar 

  9. Cutolo M, Pizzorni C, Sulli A (2005) Capillaroscopy. Best Pract Res Clin Rheumatol 19:437–452

    Article  PubMed  Google Scholar 

  10. Dancour MA, Vaz JL, Bottino DA et al (2006) Nailfold videocapillaroscopy in patients with systemic lupus erythematosus. Rheumatol Int 26:633–637

    Article  CAS  PubMed  Google Scholar 

  11. De Backer D, Creteur J, Dubois MJ et al (2006) The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med 34:403–408

    Article  PubMed  Google Scholar 

  12. Den Uil CA, Lagrand WK, van der Ent EM et al (2009) The effects of intra-aortic balloon pump support on macrocirculation and tissue microcirculation in patients with cardiogenic shock. Cardiology 114:42–46

    Article  Google Scholar 

  13. Den Uil CA, Maat AP, Lagrand WK et al (2009) Mechanical circulatory support devices improve tissue perfusion in patients with end-stage heart failure or cardiogenic shock. J Heart Lung Transpl 28:906–911

    Article  Google Scholar 

  14. Dobbe JG, Streekstra GJ, Atasever B et al (2008) Measurement of functional microcirculatory geometry and velocity distributions using automated image analysis. Med Biol Eng Comput 46:659–670

    Article  CAS  PubMed  Google Scholar 

  15. Draisma A, Bemelmans R, van der Hoeven JG et al (2009) Microcirculation and vascular reactivity during endotoxemia and endotoxin tolerance in humans. Shock 31:581–585

    Article  PubMed  Google Scholar 

  16. Dubois MJ, De Backer D, Creteur J et al (2003) Effect of vasopressin on sublingual microcirculation in a patient with distributive shock. Intensive Care Med 29:1020–1023

    PubMed  Google Scholar 

  17. Elbers PW, Ozdemir A, van Iterson M et al (2009) Microcirculatory imaging in cardiac anesthesia: ketanserin reduces blood pressure but not perfused capillary density. J Cardiothorac Vasc Anesth 23:95–101

    Article  PubMed  Google Scholar 

  18. Ellis CG, Ellsworth ML, Pittman RN et al (1992) Application of image analysis for evaluation of red blood cell dynamics in capillaries. Microvasc Res 44:214–225

    Article  CAS  PubMed  Google Scholar 

  19. Erol-Yilmaz A, Atasever B, Mathura K et al (2007) Cardiac resynchronization improves microcirculation. J Cardiac Fail 13:95–99

    Article  Google Scholar 

  20. Fagrell B (1973) Vital capillary microscopy. A clinical method for studying changes of the nutritional skin capillaries in legs with arteriosclerosis obliterans. Scand J Clin Lab Investig Suppl 133:2–50

    CAS  Google Scholar 

  21. Fries M, Weil MH, Chang YT et al (2006) Microcirculation during cardiac arrest and resuscitation. Crit Care Med 34:S454–S457

    Article  PubMed  Google Scholar 

  22. Gallucci F, Russo R, Buono R et al (2008) Indications and results of videocapillaroscopy in clinical practice. Adv Med Sci 53:149–157

    Article  CAS  PubMed  Google Scholar 

  23. Genzel-Boroviczeny O, Strotgen J, Harris AG et al (2002) Orthogonal polarization spectral imaging (OPS): a novel method to measure the microcirculation in term and preterm infants transcutaneously. Pediatr Res 51:386–391

    Article  PubMed  Google Scholar 

  24. Gerger A, Koller S, Weger W et al (2006) Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors. Cancer 107:193–200

    Article  PubMed  Google Scholar 

  25. Goedhart PT, Khalilzada M, Bezemer R et al (2007) Sidestream dark field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Opt Express 15:15101–15114

    Article  CAS  PubMed  Google Scholar 

  26. Goertz O, Ring A, Kohlinger A et al (2010) Orthogonal polarization spectral imaging: a tool for assessing burn depths? Ann Plast Surg 64:217–221

    Article  CAS  PubMed  Google Scholar 

  27. Gonzalez S, Swindells K, Rajadhyaksha M et al (2003) Changing paradigms in dermatology: confocal microscopy in clinical and surgical dermatology. Clin Dermatol 21:359–369

    Article  PubMed  Google Scholar 

  28. Groner W, Winkelman JW, Harris AG et al (1999) Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med 5:1209–1212

    Article  CAS  PubMed  Google Scholar 

  29. Halfoun VL, Pires ML, Fernandes TJ et al (2003) Videocapillaroscopy and diabetes mellitus: area of transverse segment in nailfold capillary loops reflects vascular reactivity. Diabetes Res Clin Pract 61:155–160

    Article  CAS  PubMed  Google Scholar 

  30. Harris AG, Sinitsina I, Messmer K (2000) The Cytoscan Model E-II, a new reflectance microscope for intravital microscopy: comparison with the standard fluorescence method. J Vasc Res 37:469–476

    Article  CAS  PubMed  Google Scholar 

  31. Hiedl S, Schwepcke A, Weber F et al (2010) Microcirculation in preterm infants: profound effects of patent ductus arteriosus. J Pediatr 156:191–196

    Article  PubMed  Google Scholar 

  32. Ince C (2005) The microcirculation is the motor of sepsis. Crit Care 9(Suppl 4):S13–S19

    Google Scholar 

  33. Jorneskog G, Brismar K, Fagrell B (1998) Pronounced skin capillary ischemia in the feet of diabetic patients with bad metabolic control. Diabetologia 41:410–415

    Article  CAS  PubMed  Google Scholar 

  34. Jung C, Ferrari M, Gradinger R et al (2008) Evaluation of the microcirculation during extracorporeal membrane-oxygenation. Clin Hemorheol Microcirc 40:311–314

    PubMed  Google Scholar 

  35. Klijn E, Den Uil CA, Bakker J et al (2008) The heterogeneity of the microcirculation in critical illness. Clin Chest Med 29:643–654

    Article  PubMed  Google Scholar 

  36. Klyscz T, Junger M, Jung F et al (1997) Cap image—a new kind of computer-assisted video image analysis system for dynamic capillary microscopy. Biomed Tech (Berl) 42:168–175

    Article  CAS  Google Scholar 

  37. Koch M, De Backer D, Vincent JL et al (2008) Effects of propofol on human microcirculation. Br J Anaesth 101:473–478

    Article  CAS  PubMed  Google Scholar 

  38. Kraemer-Aguiar LG, Laflor CM, Bouskela E (2008) Skin microcirculatory dysfunction is already present in normoglycemic subjects with metabolic syndrome. Metabolism 57:1740–1746

    Article  CAS  PubMed  Google Scholar 

  39. Kroth J, Weidlich K, Hiedl S et al (2008) Functional vessel density in the first month of life in preterm neonates. Pediatr Res 64:567–571

    Article  PubMed  Google Scholar 

  40. Kubli S, Waeber B, le-Ave A et al (2000) Reproducibility of laser Doppler imaging of skin blood flow as a tool to assess endothelial function. J Cardiovasc Pharmacol 36:640–648

    Article  CAS  PubMed  Google Scholar 

  41. La Civita L, Rossi M, Vagheggini G et al (1998) Microvascular involvement in systemic sclerosis: laser Doppler evaluation of reactivity to acetylcholine and sodium nitroprusside by iontophoresis. Ann Rheum Dis 57:52–55

    Article  PubMed  Google Scholar 

  42. Lam K, Sjauw KD, Henriques JP et al (2009) Improved microcirculation in patients with an acute ST-elevation myocardial infarction treated with the Impella LP2.5 percutaneous left ventricular assist device. Clin Res Cardiol 98:311–318

    Article  PubMed  Google Scholar 

  43. Langer S, Hatz R, Harris AG et al (2001) Assessing the microcirculation in a burn wound by use of OPS imaging. Eur J Med Res 6:231–234

    CAS  PubMed  Google Scholar 

  44. Lascasas-Porto CL, Milhomens AL, Virgini-Magalhaes CE et al (2008) Use of microcirculatory parameters to evaluate clinical treatments of chronic venous disorder (CVD). Microvasc Res 76:66–72

    Article  PubMed  Google Scholar 

  45. Lindbom L, Tuma RF, Arfors KE (1982) Blood flow in the rabbit tenuissimus muscle. Influence of preparative procedures for intravital microscopic observation. Acta Physiol Scand 114:121–127

    Article  CAS  PubMed  Google Scholar 

  46. Lindert J, Werner J, Redlin M et al (2002) OPS imaging of human microcirculation: a short technical report. J Vasc Res 39:368–372

    Article  CAS  PubMed  Google Scholar 

  47. Lupi O, Semenovitch I, Treu C et al (2008) Orthogonal polarization technique in the assessment of human skin microcirculation. Int J Dermatol 47:425–431

    Article  PubMed  Google Scholar 

  48. Lupi O, Semenovitch IJ, Treu C et al (2007) Evaluation of the effects of caffeine in the microcirculation and edema on thighs and buttocks using the orthogonal polarization spectral imaging and clinical parameters. J Cosmet Dermatol 6:102–107

    Article  PubMed  Google Scholar 

  49. Maricq HR, Downey JA, LeRoy EC (1976) Standstill of nailfold capillary blood flow during cooling in scleroderma and Raynaud’s syndrome. Blood Vessels 13:338–349

    CAS  PubMed  Google Scholar 

  50. Maricq HR, Spencer-Green G, LeRoy EC (1976) Skin capillary abnormalities as indicators of organ involvement in scleroderma (systemic sclerosis), Raynaud’s syndrome and dermatomyositis. Am J Med 61:862–870

    Article  CAS  PubMed  Google Scholar 

  51. Martin DS, Ince C, Goedhart P et al (2009) Abnormal blood flow in the sublingual microcirculation at high altitude. Eur J Appl Physiol 106:473–478

    Article  PubMed  Google Scholar 

  52. Mathura KR, Vollebregt KC, Boer K et al (2001) Comparison of OPS imaging and conventional capillary microscopy to study the human microcirculation. J Appl Physiol 91:74–78

    CAS  PubMed  Google Scholar 

  53. Milstein DM, Bezemer R, Lindeboom JA et al (2009) The acute effects of CMF-based chemotherapy on maxillary periodontal microcirculation. Cancer Chemother Pharmacol 64:1047–1052

    Article  CAS  PubMed  Google Scholar 

  54. Nencioni A, Trzeciak S, Shapiro NI (2009) The microcirculation as a diagnostic and therapeutic target in sepsis. Intern Emerg Med 4:413–415

    Article  PubMed  Google Scholar 

  55. Nieuwdorp M, Mooij HL, Kroon J et al (2006) Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes 55:1127–1132

    Article  CAS  PubMed  Google Scholar 

  56. Nivoit P, Wiernsperger N, Moulin P et al (2003) Effect of glycated LDL on microvascular tone in mice: a comparative study with LDL modified in vitro or isolated from diabetic patients. Diabetologia 46:1550–1558

    Article  CAS  PubMed  Google Scholar 

  57. Pan Y, Chamberlain AJ, Bailey M et al (2008) Dermatoscopy aids in the diagnosis of the solitary red scaly patch or plaque-features distinguishing superficial basal cell carcinoma, intraepidermal carcinoma, and psoriasis. J Am Acad Dermatol 59:268–274

    Article  PubMed  Google Scholar 

  58. Scholz T, Evans GR (2008) Flap microcirculation: effects of tissue manipulation and in situ preparation during soft tissue harvest. J Reconstr Microsurg 24:277–283

    Article  PubMed  Google Scholar 

  59. Schon MP, Boehncke WH (2005) Psoriasis. N Engl J Med 352:1899–1912

    Article  CAS  PubMed  Google Scholar 

  60. Slaaf DW, Tangelder GJ, Reneman RS et al (1987) A versatile incident illuminator for intravital microscopy. Int J Microcirc Clin Exp 6:391–397

    CAS  PubMed  Google Scholar 

  61. Steeghs N, Gelderblom H, Roodt JO et al (2008) Hypertension and rarefaction during treatment with telatinib, a small molecule angiogenesis inhibitor. Clin Cancer Res 14:3470–3476

    Article  CAS  PubMed  Google Scholar 

  62. Stinco G, Lautieri S, Piccirillo F et al (2009) Response of cutaneous microcirculation to treatment with mometasone furoate in patients with psoriasis. Clin Exp Dermatol 34:915–919

    Article  CAS  PubMed  Google Scholar 

  63. Taylor AE, Moore T, Paisley P (2002) The time has finally arrived: use of intravital microscopy in the airway circulation. Am J Physiol Lung Cell Mol Physiol 282:L957–L958

    CAS  PubMed  Google Scholar 

  64. Tritto I, Ambrosio G (1999) Spotlight on microcirculation: an update. Cardiovasc Res 42:600–606

    Article  CAS  PubMed  Google Scholar 

  65. Vajkoczy P, Ullrich A, Menger MD (2000) Intravital fluorescence videomicroscopy to study tumor angiogenesis and microcirculation. Neoplasia 2:53–61

    Article  CAS  PubMed  Google Scholar 

  66. Vaz JL, Dancour MA, Bottino DA et al (2004) Nailfold videocapillaroscopy in primary antiphospholipid syndrome (PAPS). Rheumatology (Oxford) 43:1025–1027

    Article  CAS  Google Scholar 

  67. Virgini-Magalhaes CE, Porto CL, Fernandes FF et al (2006) Use of microcirculatory parameters to evaluate chronic venous insufficiency. J Vasc Surg 43:1037–1044

    Article  PubMed  Google Scholar 

  68. Weidlich K, Kroth J, Hiedl CN et al (2009) Changes in microcirculation as early markers for infection in preterm infants—an observational prospective study. Pediatr Res 66(4):461–465

    Google Scholar 

Download references

Conflict of interest

The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Curt M. Treu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treu, C.M., Lupi, O., Bottino, D.A. et al. Sidestream dark field imaging: the evolution of real-time visualization of cutaneous microcirculation and its potential application in dermatology. Arch Dermatol Res 303, 69–78 (2011). https://doi.org/10.1007/s00403-010-1087-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-010-1087-7

Keywords

Navigation