Skip to main content

Advertisement

Log in

A multi-component herbal preparation (PADMA 28) improves structure/function of corticosteroid-treated skin, leading to improved wound healing of subsequently induced abrasion wounds in rats

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

PADMA 28 is a multi-component herbal mixture formulated according to an ancient Tibetan recipe. PADMA 28 is known to stimulate collagen production and reduced levels of collagen-degrading matrix metalloproteinases (MMPs). The goal of the present study was to determine whether topical treatment of rat skin with PADMA 28 would improve skin structure/function, and whether subsequently induced abrasion wounds would heal more rapidly in skin that had been pretreated with PADMA 28. Hairless rats were exposed to a potent topical corticosteroid (Temovate) in combination with either DMSO alone or with PADMA 28 given topically. At the end of the treatment period, superficial wounds were created in the skin, and time to wound closure was assessed. Collagen production and matrix-degrading MMPs were assessed. Abrasion wounds in skin that had been pretreated with PADMA 28 healed more rapidly than did wounds in Temovate plus DMSO-treated skin. Under conditions in which improved wound healing was observed, there was an increased collagen production and decreased MMP expression, but no significant epidermal hyperplasia and no evidence of skin irritation. The ability to stimulate collagen production and inhibit collagen-degrading enzymes in skin and facilitate more rapid wound closure without irritation should provide a rationale for development of the herbal preparation as a “skin-repair” agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anstead GM (1998) Steroids, retinoids, and wound healing. Adv Wound Care 11:277–285

    CAS  PubMed  Google Scholar 

  2. Ashcroft GS, Mills SJ, Ashworth JJ (2002) Ageing and wound healing. Biogerontology 3:337–345

    Article  CAS  PubMed  Google Scholar 

  3. Aslam MN, Fligiel H, Lateef H et al (2005) PADMA 28: a multi-component herbal preparation with retinoid-like dermal activity but without epidermal effects. J Invest Dermatol 124:524–529

    Article  CAS  PubMed  Google Scholar 

  4. Drabaek H, Mehlsen J, Himmelstrup H et al (1993) A botanical compound, PADMA 28, increases walking distance in stable intermittent claudication. Angiology 44:863–867

    Article  CAS  PubMed  Google Scholar 

  5. Elias PM, Fritsch P, Lampe M et al (1981) Retinoid effects on epidermal structure, differentiation and permeability. Lab Invest 44:531–540

    CAS  PubMed  Google Scholar 

  6. Fisher GJ, Datta SC, Talwar HS et al (1996) Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature 379:335–339

    Article  CAS  PubMed  Google Scholar 

  7. Fisher GJ, Wang ZQ, Datta SC et al (1997) Pathophysiology of premature skin aging induced by ultraviolet light. New Engl J Med 337:1419–1428

    Article  CAS  PubMed  Google Scholar 

  8. Fisher GJ, Kang S, Varani J et al (2002) Mechanisms of photoaging and chronological skin aging. Arch Dermatol 138:1462–1470

    Article  CAS  PubMed  Google Scholar 

  9. Floyd EE, Jetten AM (1989) Regulation of type I (epidermal) transglutaminase mRNA levels during squamous differentiation: down-regulation by retinoids. Mol Cell Biol 9:4846–4851

    CAS  PubMed  Google Scholar 

  10. Fry L (1988) Psoriasis. Br J Dermatol 119:445–461

    Article  CAS  PubMed  Google Scholar 

  11. Griffiths CE, Russman AN, Majmudar G et al (1993) Restoration of collagen formation in photodamaged human skin by tretinoin (retinoic acid). New Engl J Med 329:530–535

    Article  CAS  PubMed  Google Scholar 

  12. Griffiths CE, Kang S, Ellis CN et al (1995) Two concentrations of topical tretinoin (retinoic acid) cause similar improvement of photoaging but different degrees of irritation. A double-blind, vehicle-controlled comparison of 0.1% and 0.025% tretinoin creams. Arch Dermatol 131:1037–1044

    Article  CAS  PubMed  Google Scholar 

  13. rGya mtsho sDS (1994) Gsoba rig pa’ bsten bcos smen bla’ dgongs rgyen rgyud bzhi’ gsal byed be dur snogpo’ mallika zhes bya bu bzhugs so—Smed cha. (Commentary to the rgyud bzhi, The Blue Beryll, vol II). Tibetan Medical & Astro Institute, Dharamsala

    Google Scholar 

  14. Jetten AM, George MA, Pettit GR et al (1989) Action of phorbol esters, bryostatins and retinoic acid on cholesterol sulfate synthesis: relation to the multistep process of differentiation in human epidermal keratinocytes. J Invest Dermatol 93:108–115

    Article  CAS  PubMed  Google Scholar 

  15. Kang S, Duell EA, Fisher GJ et al (1995) Application of retinol to human skin in vivo induces epidermal hyperplasia and cellular retinoid-binding proteins characteristic of retinoic acid but without measurable retinoic acid levels or irritation. J Invest Dermatol 105:549–556

    Article  CAS  PubMed  Google Scholar 

  16. Klenerman L, McCabe C, Cogley D et al (1996) Screening for patients at risk of diabetic foot ulceration in a general diabetic outpatient clinic. Diabet Med 13:561–563

    Article  CAS  PubMed  Google Scholar 

  17. Kligman AM, Balin AK (1989) Aging of human skin. In: Balin AK, Kligman AM (eds) Aging and the human skin. Raven Press, New York, pp 1–11

    Google Scholar 

  18. Laing P (1998) The development and complications of diabetic foot ulcers. Am J Surg 176(2A Suppl):11S–19S

    Article  CAS  PubMed  Google Scholar 

  19. Lateef H, Abatan OI, Aslam MN et al (2005) Topical pretreatment of diabetic rats with all-trans retinoic acid increases healing of subsequently induced abrasion wounds. Diabetes 54:855–861

    Article  CAS  PubMed  Google Scholar 

  20. Lavker RM (1979) Structural alterations in exposed and unexposed aged skin. J Invest Dermatol 73:59–66

    Article  CAS  PubMed  Google Scholar 

  21. Lavker RM (1995) Cutaneous aging: chronologic versus photoaging. In: Gilchrest BA (ed) Photoaging. Blackwell, Cambridge, MA, pp 123–135

    Google Scholar 

  22. Lovell CR, Smolenski KA, Duance VC et al (1987) Type I and III collagen content and fibre distribution in normal human skin during ageing. Br J Dermatol 117:419–428

    Article  CAS  PubMed  Google Scholar 

  23. Margolis DJ, Allen-Taylor L, Hoffstad O et al (2002) Diabetic neuropathic foot ulcers: the association of wound size, wound duration, and wound grade on healing. Diabetes Care 25:1835–1839

    Article  PubMed  Google Scholar 

  24. Margolis DJ, Kantor J, Berlin JA (1999) Healing of diabetic neuropathic foot ulcers receiving standard treatment. A meta-analysis. Diabetes Care 22:692–695

    Article  CAS  PubMed  Google Scholar 

  25. McMichael AJ, Griffiths CE, Talwar HS et al (1996) Concurrent application of tretinoin (retinoic acid) partially protects against corticosteroid-induced epidermal atrophy. Br J Dermatol 135:60–64

    Article  CAS  PubMed  Google Scholar 

  26. Melzer J, Brignoli R, Diehm C et al (2006) Treating intermittent claudication with Tibetan medicine Padma 28: does it work? Atherosclerosis 189:39–46

    Article  CAS  PubMed  Google Scholar 

  27. Oikarinen A, Kallioinen M (1989) A biochemical and immunohistochemical study of collagen in sun-exposed and protected skin. Photodermatology 6:24–31

    CAS  PubMed  Google Scholar 

  28. Phillips TJ, Gottlieb AB, Leyden JJ et al (2002) Efficacy of 0.1% tazarotene cream for the treatment of photodamage: a 12-month multicenter, randomized trial. Arch Dermatol 138:1486–1493

    Article  CAS  PubMed  Google Scholar 

  29. Prakash A, Pandit PN, Sharman LK (1974) Studies in wound healing in experimental diabetes. Int Surg 59:25–28

    CAS  PubMed  Google Scholar 

  30. Reiber GE (1996) The epidemiology of diabetic foot problems. Diabet Med 13:S6–S11

    PubMed  Google Scholar 

  31. Sallon S, Beer G, Rosenfeld J et al (1998) The efficacy of PADMA 28, a herbal preparation, in the treatment of intermittent claudication: a controlled double-blind pilot study with objective assessment of chronic occlusive arterial disease patients. J Vasc Invest 4:129–136

    Google Scholar 

  32. Samochowiec L, Wojcicki J, Kosmider K et al (1987) Wirksamkeitsprüfung von PADMA 28 bei der Behandlung von Patienten mit chronischen arteriellen Durchblutungsstörungen. Herba Pol 33:29–41

    Google Scholar 

  33. Schräder R, Nachbur B, Mahler F (1985) Wirksamkeit von PADMA 28 auf die Claudicatio intermittens bei chronischer peripherer arterieller Verschlusskrankheit: Kontrollierte Doppelblindstudie. Schweiz Med Wochenschr 115:752–756

    PubMed  Google Scholar 

  34. Schwartz E, Cruickshank FA, Christensen CC et al (1993) Collagen alterations in chronically sun-damaged human skin. Photochem Photobiol 58:841–844

    Article  CAS  PubMed  Google Scholar 

  35. Schwartz E, Cruickshank FA, Perlish JS et al (1989) Alterations in dermal collagen in ultraviolet irradiated hairless mice. J Invest Dermatol 93:142–146

    Article  CAS  PubMed  Google Scholar 

  36. Singer AJ, Clark RA (1999) Cutaneous wound healing. New Engl J Med 341:738–746

    Article  CAS  PubMed  Google Scholar 

  37. Smith JG Jr, Davidson EA, Sams WM Jr et al (1962) Alterations in human dermal connective tissue with age and chronic sun damage. J Invest Dermatol 39:347–350

    Article  CAS  PubMed  Google Scholar 

  38. Smulski HS, Wojcicki J (1995) Placebo controlled, double blind trial to determine the efficacy of the Tibetan plant preparation PADMA 28 for intermittent claudication. Altern Ther Health Med 1:44–49

    Google Scholar 

  39. Stadelmann WK, Digenis AG, Tobin GR (1998) Physiology and healing dynamics of chronic cutaneous wounds. Am J Surg 176(2A Suppl):26S–38S

    Article  CAS  PubMed  Google Scholar 

  40. Strigini L, Ryan T (1996) Wound healing in elderly human skin. Clin Dermatol 14:197–206

    Article  CAS  PubMed  Google Scholar 

  41. Varani J, Warner RL, Gharaee-Kermani M et al (2000) Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. J Invest Dermatol 114:480–486

    Article  CAS  PubMed  Google Scholar 

  42. Varani J, Zeigler M, Dame MK et al (2001) Heparin-binding epidermal growth factor activation of keratinocyte ErbB receptors mediates epidermal hyperplasia, a prominent side-effect of retinoid therapy. J Invest Dermatol 117:1335–1341

    Article  CAS  PubMed  Google Scholar 

  43. Varani J, Spearman D, Perone P et al (2001) Inhibition of type I procollagen synthesis by damaged collagen in photoaged skin and by collagenase-degraded collagen in vitro. Am J Pathol 158:931–942

    CAS  PubMed  Google Scholar 

  44. Varani J, Schuger L, Dame MK et al (2004) Reduced fibroblast interaction with intact collagen as a mechanism for depressed collagen synthesis in photodamaged skin. J Invest Dermatol 122:1471–1479

    Article  CAS  PubMed  Google Scholar 

  45. Varani J, Dame MK, Rittie L et al (2006) Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol 168:1861–1868

    Article  CAS  PubMed  Google Scholar 

  46. Varani J, Perone P, O’Brien-Deming M et al (2009) Impaired keratinocyte function on matrix metalloproteinase-1 (MMP-1) damaged collagen. Arch Dermatol Res 301:497–506

    Article  CAS  PubMed  Google Scholar 

  47. Warner RL, Bhagavathula N, Nerusu K et al (2008) MDI 301, a nonirritating retinoid, improves abrasion wound healing in damaged/atrophic skin. Wound Repair Regen 16:117–124

    Article  PubMed  Google Scholar 

  48. Weiss JS, Ellis CN, Headington JT et al (1988) Topical tretinoin improves photoaged skin. A double-blind vehicle-controlled study. JAMA 259:527–532

    Article  CAS  PubMed  Google Scholar 

  49. Wicke C, Halliday B, Allen D et al (2000) Effects of steroids and retinoids on wound healing. Arch Surg 135:1265–1270

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge PADMA AG (Schwerzenbach, Switzerland) as the source of the PADMA 28 used in the study. The authors would also like to thank Lisa Riggs and Ron Craig (Histomorphometry Core Laboratory) for help with histology. The core laboratory is supported by the Department of Pathology, University of Michigan.

Conflict of interest statement

The authors state no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Varani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aslam, M.N., Warner, R.L., Bhagavathula, N. et al. A multi-component herbal preparation (PADMA 28) improves structure/function of corticosteroid-treated skin, leading to improved wound healing of subsequently induced abrasion wounds in rats. Arch Dermatol Res 302, 669–677 (2010). https://doi.org/10.1007/s00403-010-1066-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-010-1066-z

Keywords