Skip to main content

Advertisement

Log in

A minimally invasive human in vivo cutaneous wound model for the evaluation of innate skin reactivity and healing status

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Individual variability in skin reactivity and healing capacity after trauma are important clinical issues. The aims were to develop an in vivo, human wound model based on a standardised minimal skin injury and to demonstrate therapeutic effect of simple wound therapies in terms of morphological wound outcome with changes in skin blood perfusion as a quantified indicator of wound healing. In a series of experiments, wounds were induced on the normal forearm skin of volunteers using a blood collection lancet. This was well tolerated. Wounds were assessed by naked eye examination or laser Doppler perfusion imaging (LDPI) at baseline and at up to 6 further time points up to 96 h in control wounds and wounds treated by commonly used occlusive dressing options. Assessment by clinical observation with 10× magnification showed over 96 h a progression of erythema, surface crust, a new keratinisation layer and finally healed areas. LDPI quantifying wound erythema showed a peak at 24 h and near normal levels at 96 h. Inter-individual variability was evident but intra-individual variability was much less pronounced. Wounds treated with occlusion showed a statistically significant more rapid return to baseline blood perfusion as measured by LDPI compared to controls supported by favourable healing parameters in the clinical assessment. The paper exemplifies use of non-invasive, bioengineering technique for quantification of individual innate variability in skin reactivity, wound healing capacity and therapeutic effect in a well-tolerated in vivo, human, minimal skin trauma model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Akmaz O, Erel A, Gurer M (2000) Comparison of histopathologic and clinical evaluations of the pathergy test in Behçet’s disease. Int J Dermatol 39:121–125

    Article  CAS  PubMed  Google Scholar 

  2. Alayli G, Aydin F, Coban AY et al (2007) T helper 1 type cytokines polymorphisms: association with susceptibility to Behçet’s disease. Clin Rheumatol 26:1299–1305

    Article  PubMed  Google Scholar 

  3. Alexis AF, Wilson DC, Todhunter JA, Stiller MJ (1999) Reassessment of the suction blister model of wound healing: introduction of a new high pressure device. Int J Dermatol 38:613–617

    Article  CAS  PubMed  Google Scholar 

  4. Anderson C, Andersson T, Wardell K (1994) Changes in skin circulation after insertion of a microdialysis probe visualized by laser Doppler perfusion imaging. J Invest Dermatol 102:807–811

    Article  CAS  PubMed  Google Scholar 

  5. Arnold F, He CYJ, Cherry GW (1995) Perfusion imaging of skin island flap blood flow by a scanning laser Doppler technique. Br J Plast Surg 48:280–287

    Article  CAS  PubMed  Google Scholar 

  6. Barton G (2008) A calculated response: control of inflammation by the innate immune system. J Clin Invest 118:413–420

    Article  CAS  PubMed  Google Scholar 

  7. Callen JP, Jackson JM (2007) Pyoderma gangrenosum: an update. Rheum Dis Clin North Am 33:787–802

    Article  PubMed  Google Scholar 

  8. Christensen KS, Klarke M (1986) Transcutaneous oxygen measurement in peripheral occlusive disease. An indicator of wound healing in leg amputation. J Bone Joint Surg Br 68(3):423–426

    CAS  PubMed  Google Scholar 

  9. Clark RA (1999) Mechanisms of cutaneous wound repair. In: Freedberg IM, Eisen A, Wolff K, Austin KF, Goldsmith LA, Katz SI, Fitzpatrick TB (eds) Fitzpatrick’s dermatology in general medicine, vol 1, 5th edn. McGraw-Hill, New York, pp 326–341

    Google Scholar 

  10. Cohen K, Mast B (1990) Models of wound healing. J Trauma 30:S149–S155

    Article  CAS  PubMed  Google Scholar 

  11. Curran MP, Plosker GL (2002) Bilayer bioengineered skin substitute (Apligraf): a review of its use in the treatment of venous leg ulcers and diabetic foot ulcers. Biodrugs 16(6):439–455

    Article  PubMed  Google Scholar 

  12. Eichhorn W, Auer T, Voy ED, Hoffmann K (1994) Laser Doppler imaging of axial and random pattern flaps in the maxillo-facial area. A preliminary report. J Craniomaxillofac Surg 22:301–306

    CAS  PubMed  Google Scholar 

  13. Elias P, Feingold K, Fluhr J (2003) The skin as an organ of protection. In: Freedberg I, Eisen A, Wolff K et al (eds) Fitzpatrick’s dermatology in general medicine, 6th edn. McGraw-Hill, New York, pp 107–118

    Google Scholar 

  14. Geer D, Andreadis D, Stelios T (2004) In vivo model of wound healing based on transplanted tissue-engineered skin. Tissue Eng 10(7–8):1006–1017

    CAS  PubMed  Google Scholar 

  15. Gibbs S, van den Hoogenband HM, Kirtschig G, Richters CD, Spiekstra SW, Breetveld M, Scheper RJ, de Boer EM (2006) Autologous full-thickness skin substitutes for healing chronic wounds. Br J Dermatol 155(2):267–274

    Article  CAS  PubMed  Google Scholar 

  16. Graham JS, Schomacker KT, Glatter RD, Briscoe CM, Braue EH Jr, Squibb KS (2002) Bioengineering methods employed in the study of wound healing of sulphur mustard burns. Skin Res Technol 8(1):57–69

    PubMed  Google Scholar 

  17. Gschwandtner ME, Ambrozy E, Schneider B, Fasching S, Willfort A, Ehringer H (1999) Laser Doppler imaging and capillary microscopy in ischaemic ulcers. Atherosclerosis 142:225–232

    Article  CAS  PubMed  Google Scholar 

  18. Koivukangas V, Annala A, Salmela P, Oikarinen A (1999) Delayed restoration of epidermal barrier function after suction blister injury in patients with diabetes mellitus. Diabet Med 16:563–567

    Article  CAS  PubMed  Google Scholar 

  19. Krogstad A, Jansson P, Gisslèn P, Lönnroth P (1996) Microdialysis methodology for the measurement of dermal interstitial fluid in humans. Br J Dermatol 134:1005–1012

    Article  CAS  PubMed  Google Scholar 

  20. Langemo D, Anderson J, Hanson D, Hunter S, Thompson P, Posthauer ME (2006) Nutritional considerations in wound care. Adv Skin Wound Care 19(6):297–303

    Article  PubMed  Google Scholar 

  21. Leahy MJ, Enfield JG, Clancy NT, O’Doherty J, McNamara P, Nilsson GE (2007) Biophotonic methods in microcirculation imaging. Med Laser Appl 22:105–126

    Article  Google Scholar 

  22. Levine R, Agren M, Mertz P (1998) Effect of occlusion on cell proliferation during epidermal healing. J Cutan Med Surg 2:193–198

    CAS  PubMed  Google Scholar 

  23. Levy J, von Rosen J, Gasmuller J et al (1995) Validation of an in vivo wound healing model for the quantification of pharmacological effects on epidermal regeneration. Dermatology 190:136–141

    Article  CAS  PubMed  Google Scholar 

  24. Mariathasan S, Monack DM (2007) Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol 7(1):31–40

    Google Scholar 

  25. McGrath J, Breathnach S (2004) Wound healing. In: Champion R, Burton J, Burns D, Breathnach S (eds) Rook/Ebling textbook of dermatology, 6th edn. Blackwell Science Ltd., London, pp 11.1–11.25

    Google Scholar 

  26. Meier K, Nanney LB (2006) Emerging new drugs for wound repair. Expert Opin Emerg Drugs 11(1):23–37

    Article  CAS  PubMed  Google Scholar 

  27. Melikoglu M, Uysal S, Krueger JG, Kaplan G, Gogus F, Yazici H, Oliver S (2006) Characterization of the divergent wound-healing responses occurring in the pathergy reaction and normal healthy volunteers. J Immunol 177(9):6415–6421

    CAS  PubMed  Google Scholar 

  28. Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF (2007) Impaired wound healing (review). Clin Dermatol 25(1):19–25

    Article  PubMed  Google Scholar 

  29. Meylan E, Tschopp J, Karin M (2006) Intracellular pattern recognition receptors in the host response. Nature 442(7098):39–44

    Article  CAS  PubMed  Google Scholar 

  30. Moncrieff M, Cotton S, Claridges E, Hall P (2002) Spectrophotometric intracutaneous analysis: a new technique for imaging pigmented skin lesions. Br J Dermatol 146:448–457

    Article  CAS  PubMed  Google Scholar 

  31. Neeman M, Dafni H, Bukhari O, Braun RD, Dewhirst MW (2001) In vivo BOLD contrast MRI mapping of subcutaneous vascular function and maturation: validation by intravital video microscopy. Magn Reson Med 45(5):87–98

    Article  Google Scholar 

  32. Olerud JE, Odland GF, Burgess EM, Wyss CR, Fisher LD, Matsen FA (1995) A model for the study of wounds in normal elderly adults and patients with peripheral vascular disease or diabetes mellitus. J Surg Res 59:349–360

    Article  CAS  PubMed  Google Scholar 

  33. O’Doherty J, Henricson J, Anderson C, Leahy MJ, Nilsson GE, Sjöberg F (2007) Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation. Skin Res Technol 13:1–13

    Article  Google Scholar 

  34. Powell F, Schroeter A, Su W, Perry O (1985) Pyoderma gangrenosum: a review of 86 patients. Q J Med (new series) 55:173–186

    CAS  Google Scholar 

  35. Price RD, Das-Gupta V, Leigh IM, Navsaria HA (2006) A comparison of tissue-engineered hyaluronic acid dermal matrices in a human wound model. Tissue Eng 12(10):2985–2995

    Article  CAS  PubMed  Google Scholar 

  36. Reuterdahl C, Sunberg C, Rubin K, Funa K, Gerdin B (1993) Tissue localization of beta receptors for platelet-derived growth factor and platelet-derived growth factor B chain during wound repair in humans. J Clin Invest 91:2065

    Article  CAS  PubMed  Google Scholar 

  37. Rodrigues LM, Roberto MA (2006) Characterization strategies for the functional assessment of the cutaneous lesion. Burns 32(7):797–801

    Article  PubMed  Google Scholar 

  38. Roesel JF, Nanney LB (1995) Assessment of differential cytokine effects on angiogenesis using an in vivo model of cutaneous wound repair. J Surg Res 58:449–459

    Article  CAS  PubMed  Google Scholar 

  39. Salcido R, Popescu A, Ahn C (2007) Animal models in pressure ulcer research. J Spinal Cord Med 30(2):107–116

    PubMed  Google Scholar 

  40. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–745

    Article  CAS  PubMed  Google Scholar 

  41. Sjögren F, Anderson CD (2009) Sterile trauma to normal human dermis invariably induces IL1b, IL6 and IL8 in an innate response to “danger”. Acta Derm Venereol 89:459–465

    Article  PubMed  Google Scholar 

  42. Svedman C, Cherry GW, Ryan TJ (1998) The veno-arteriolar reflex in venous leg ulcer patients studied by laser Doppler imaging. Acta Derm Venereol 78:258–261

    Article  CAS  PubMed  Google Scholar 

  43. Taylor K, Yamasaki K, Radek K, DiNardo A, Goodzari H, Golenbock D, Beutler B, Gallo R (2007) Recognition of hyaluronin released in sterile injury involves a unique receptor complex dependant on Toll-like receptor 4, CD44 and MD-2. J Biol Chem 282:18265–18275

    Article  CAS  PubMed  Google Scholar 

  44. Terashi K, Izumi K, Deveci M, Rhodes LM, Marcelo CL (2005) High glucose inhibits human epidermal keratinocyte proliferation for cellular studies on diabetes mellitus. Int Wound J 2(4):298–304

    Article  PubMed  Google Scholar 

  45. Thomas D, Hill CM, Lewis MA, Stephens P, Walker R, VonDer Weth A (2000) Randomized clinical trial of the effect of semi-occlusive dressings on the microflora and clinical outcome of acute facial wounds. Wound Rep Reg 8:258–263

    Article  CAS  Google Scholar 

  46. Tønnesen H, Nielsen PR, Lauritzen JB, Møller AM (2009) Smoking and alcohol intervention before surgery: evidence for best practice. Br J Anaesth 102(3):297–306

    Article  PubMed  Google Scholar 

  47. Varol A (2005) A minimally invasive human in vivo model of wound healing. Masters thesis, Faculty of Medicine, University of NSW, Australia

  48. Varol A, Seifert O, Anderson C (2010) The skin pathergy test: innately useful? Arch Dermatol Res 302:155–168

    Google Scholar 

  49. Wardell K, Andersson A, Anderson C (1996) Analysis of laser Doppler perfusion images of experimental irritant skin reactions. Skin Res Technol 2:149–157

    Article  Google Scholar 

  50. Wardell K, Jakobsson A, Nilsson GE (1993) Laser Doppler perfusion imaging by dynamic light scattering. IEEE Trans Biomed Eng 40:309–316

    Article  CAS  PubMed  Google Scholar 

  51. Wardell K, Naver HK, Nilsson GE et al (1993) The cutaneous vascular axon reflex in humans characterized by laser Doppler perfusion imaging. J Physiol 460:185–199

    CAS  PubMed  Google Scholar 

  52. Wikstrom SO, Svedman P, Svensson H, Tanweer AS (1999) Effect of transcutaneous nerve stimulation on microcirculation in intact skin and blister wounds in healthy volunteers. Scand J Plast Reconstr Surg Hand Surg 33(2):195–201

    Article  CAS  PubMed  Google Scholar 

  53. Yamasaki K, Muto J, Taylor K, Cogen A, Audish D, Bertin J, Grant E, Coyle A, Misaghi A, Hoffman H, Gallo R (2009) NLRP3/cryopyrin is necessary for IL-1b release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. J Biol Chem 284:12762–12771

    Google Scholar 

Download references

Acknowledgments

These studies have been supported by the Departments of Dermatology at Liverpool Hospital, NSW, Australia and University Hospital, Linköping, Sweden. We are grateful for the expert help on technical and practical issues provided by Karin Wårdell and Michael Ilias and for comments on data presentation from Gert Nilsson, Neil Clancy, Oliver Seifert and Joakim Henricson.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris D. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varol, A.L., Anderson, C.D. A minimally invasive human in vivo cutaneous wound model for the evaluation of innate skin reactivity and healing status. Arch Dermatol Res 302, 383–393 (2010). https://doi.org/10.1007/s00403-010-1043-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-010-1043-6

Keywords

Navigation